主页 > 人工智能  > 

《动手学深度学习(PyTorch版)》笔记7.1


注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。

Chapter7 Modern Convolutional Neural Networks 7.1 Deep Convolutional Neural Network: AlexNet

import torch from torch import nn from d2l import torch as d2l import matplotlib.pyplot as plt net = nn.Sequential( nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2), #使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数 nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2), nn.Flatten(), nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5), # 这里全连接层的输出数量是LeNet中的几倍,所以使用dropout层来减轻过拟合 nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10))#由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000 X = torch.randn(1, 1, 224, 224) for layer in net: X=layer(X) print(layer.__class__.__name__,'output shape:\t',X.shape) batch_size = 128 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224) #训练 lr, num_epochs = 0.01, 10 d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) plt.show()

训练结果:

标签:

《动手学深度学习(PyTorch版)》笔记7.1由讯客互联人工智能栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“《动手学深度学习(PyTorch版)》笔记7.1