主页 > IT业界  > 

YOLOv12从入门到入土(含结构图)

YOLOv12从入门到入土(含结构图)


论文链接: arxiv.org/abs/2502.12524

代码链接: github /sunsmarterjie/yolov12


 文章摘要:

        长期以来,增强YOLO框架的网络架构一直至关重要,但一直专注于基于cnn的改进,尽管注意力机制在建模能力方面已被证明具有优越性。这是因为基于注意力的模型无法匹配基于cnn的模型的速度。本文提出了一种以注意力为中心的YOLO框架,即YOLOv12,与之前基于cnn的YOLO框架的速度相匹配,同时利用了注意力机制的性能优势。YOLOv12在精度和速度方面超越了所有流行的实时目标检测器。例如,YOLOv12-N在T4 GPU上以1.64ms的推理延迟实现了40.6% mAP,以相当的速度超过了高级的YOLOv10-N / YOLOv11-N 2.1%/1.2% mAP。这种优势可以扩展到其他模型规模。YOLOv12还超越了改善DETR的端到端实时检测器,如RT-DETR /RT-DETRv2: YOLOv12- s比RT-DETR- r18 / RT-DETRv2-r18运行更快42%,仅使用36%的计算和45%的参数。更多的比较见图1。

总结:作者围提出YOLOv12目标检测模型,测试结果更快、更强,围绕注意力机制进行创新。


一、创新点总结

        作者构建了一个以注意力为核心构建了YOLOv12检测模型,主要创新点创新点如下:

        1、提出一种简单有效的区域注意力机制(area-attention)。

        2、提出一种高效的聚合网络结构R-ELAN。

        作者提出的area-attention代码如下:

class AAttn(nn.Module): """ Area-attention module with the requirement of flash attention. Attributes: dim (int): Number of hidden channels; num_heads (int): Number of heads into which the attention mechanism is divided; area (int, optional): Number of areas the feature map is divided. Defaults to 1. Methods: forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism. Examples: >>> import torch >>> from ultralytics.nn.modules import AAttn >>> model = AAttn(dim=64, num_heads=2, area=4) >>> x = torch.randn(2, 64, 128, 128) >>> output = model(x) >>> print(output.shape) Notes: recommend that dim//num_heads be a multiple of 32 or 64. """ def __init__(self, dim, num_heads, area=1): """Initializes the area-attention module, a simple yet efficient attention module for YOLO.""" super().__init__() self.area = area self.num_heads = num_heads self.head_dim = head_dim = dim // num_heads all_head_dim = head_dim * self.num_heads self.qkv = Conv(dim, all_head_dim * 3, 1, act=False) self.proj = Conv(all_head_dim, dim, 1, act=False) self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False) def forward(self, x): """Processes the input tensor 'x' through the area-attention""" B, C, H, W = x.shape N = H * W qkv = self.qkv(x).flatten(2).transpose(1, 2) if self.area > 1: qkv = qkv.reshape(B * self.area, N // self.area, C * 3) B, N, _ = qkv.shape q, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split( [self.head_dim, self.head_dim, self.head_dim], dim=3 ) # if x.is_cuda: # x = flash_attn_func( # q.contiguous().half(), # k.contiguous().half(), # v.contiguous().half() # ).to(q.dtype) # else: q = q.permute(0, 2, 3, 1) k = k.permute(0, 2, 3, 1) v = v.permute(0, 2, 3, 1) attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5) max_attn = attn.max(dim=-1, keepdim=True).values exp_attn = torch.exp(attn - max_attn) attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True) x = (v @ attn.transpose(-2, -1)) x = x.permute(0, 3, 1, 2) v = v.permute(0, 3, 1, 2) if self.area > 1: x = x.reshape(B // self.area, N * self.area, C) v = v.reshape(B // self.area, N * self.area, C) B, N, _ = x.shape x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) v = v.reshape(B, H, W, C).permute(0, 3, 1, 2) x = x + self.pe(v) x = self.proj(x) return x

         结构上与YOLOv11里C2PSA中的模式相似,使用了Flash-attn进行运算加速。Flash-attn安装时需要找到与cuda、torch和python解释器对应的版本,Windows用户可用上述代码替换官方代码的AAttn代码,无需安装Flash-attn。

        R-ELAN结构如下图所示:

        作者基于该结构构建了A2C2f模块,与C2f/C3K2模块结构类似,代码如下:

class AAttn(nn.Module): """ Area-attention module with the requirement of flash attention. Attributes: dim (int): Number of hidden channels; num_heads (int): Number of heads into which the attention mechanism is divided; area (int, optional): Number of areas the feature map is divided. Defaults to 1. Methods: forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism. Examples: >>> import torch >>> from ultralytics.nn.modules import AAttn >>> model = AAttn(dim=64, num_heads=2, area=4) >>> x = torch.randn(2, 64, 128, 128) >>> output = model(x) >>> print(output.shape) Notes: recommend that dim//num_heads be a multiple of 32 or 64. """ def __init__(self, dim, num_heads, area=1): """Initializes the area-attention module, a simple yet efficient attention module for YOLO.""" super().__init__() self.area = area self.num_heads = num_heads self.head_dim = head_dim = dim // num_heads all_head_dim = head_dim * self.num_heads self.qkv = Conv(dim, all_head_dim * 3, 1, act=False) self.proj = Conv(all_head_dim, dim, 1, act=False) self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False) def forward(self, x): """Processes the input tensor 'x' through the area-attention""" B, C, H, W = x.shape N = H * W qkv = self.qkv(x).flatten(2).transpose(1, 2) if self.area > 1: qkv = qkv.reshape(B * self.area, N // self.area, C * 3) B, N, _ = qkv.shape q, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split( [self.head_dim, self.head_dim, self.head_dim], dim=3 ) # if x.is_cuda: # x = flash_attn_func( # q.contiguous().half(), # k.contiguous().half(), # v.contiguous().half() # ).to(q.dtype) # else: q = q.permute(0, 2, 3, 1) k = k.permute(0, 2, 3, 1) v = v.permute(0, 2, 3, 1) attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5) max_attn = attn.max(dim=-1, keepdim=True).values exp_attn = torch.exp(attn - max_attn) attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True) x = (v @ attn.transpose(-2, -1)) x = x.permute(0, 3, 1, 2) v = v.permute(0, 3, 1, 2) if self.area > 1: x = x.reshape(B // self.area, N * self.area, C) v = v.reshape(B // self.area, N * self.area, C) B, N, _ = x.shape x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) v = v.reshape(B, H, W, C).permute(0, 3, 1, 2) x = x + self.pe(v) x = self.proj(x) return x class ABlock(nn.Module): """ ABlock class implementing a Area-Attention block with effective feature extraction. This class encapsulates the functionality for applying multi-head attention with feature map are dividing into areas and feed-forward neural network layers. Attributes: dim (int): Number of hidden channels; num_heads (int): Number of heads into which the attention mechanism is divided; mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2; area (int, optional): Number of areas the feature map is divided. Defaults to 1. Methods: forward: Performs a forward pass through the ABlock, applying area-attention and feed-forward layers. Examples: Create a ABlock and perform a forward pass >>> model = ABlock(dim=64, num_heads=2, mlp_ratio=1.2, area=4) >>> x = torch.randn(2, 64, 128, 128) >>> output = model(x) >>> print(output.shape) Notes: recommend that dim//num_heads be a multiple of 32 or 64. """ def __init__(self, dim, num_heads, mlp_ratio=1.2, area=1): """Initializes the ABlock with area-attention and feed-forward layers for faster feature extraction.""" super().__init__() self.attn = AAttn(dim, num_heads=num_heads, area=area) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False)) self.apply(self._init_weights) def _init_weights(self, m): """Initialize weights using a truncated normal distribution.""" if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Conv2d) and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): """Executes a forward pass through ABlock, applying area-attention and feed-forward layers to the input tensor.""" x = x + self.attn(x) x = x + self.mlp(x) return x class A2C2f(nn.Module): """ A2C2f module with residual enhanced feature extraction using ABlock blocks with area-attention. Also known as R-ELAN This class extends the C2f module by incorporating ABlock blocks for fast attention mechanisms and feature extraction. Attributes: c1 (int): Number of input channels; c2 (int): Number of output channels; n (int, optional): Number of 2xABlock modules to stack. Defaults to 1; a2 (bool, optional): Whether use area-attention. Defaults to True; area (int, optional): Number of areas the feature map is divided. Defaults to 1; residual (bool, optional): Whether use the residual (with layer scale). Defaults to False; mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2; e (float, optional): Expansion ratio for R-ELAN modules. Defaults to 0.5. g (int, optional): Number of groups for grouped convolution. Defaults to 1; shortcut (bool, optional): Whether to use shortcut connection. Defaults to True; Methods: forward: Performs a forward pass through the A2C2f module. Examples: >>> import torch >>> from ultralytics.nn.modules import A2C2f >>> model = A2C2f(c1=64, c2=64, n=2, a2=True, area=4, residual=True, e=0.5) >>> x = torch.randn(2, 64, 128, 128) >>> output = model(x) >>> print(output.shape) """ def __init__(self, c1, c2, n=1, a2=True, area=1, residual=False, mlp_ratio=2.0, e=0.5, g=1, shortcut=True): super().__init__() c_ = int(c2 * e) # hidden channels assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32." # num_heads = c_ // 64 if c_ // 64 >= 2 else c_ // 32 num_heads = c_ // 32 self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv((1 + n) * c_, c2, 1) # optional act=FReLU(c2) init_values = 0.01 # or smaller self.gamma = nn.Parameter(init_values * torch.ones((c2)), requires_grad=True) if a2 and residual else None self.m = nn.ModuleList( nn.Sequential(*(ABlock(c_, num_heads, mlp_ratio, area) for _ in range(2))) if a2 else C3k(c_, c_, 2, shortcut, g) for _ in range(n) ) def forward(self, x): """Forward pass through R-ELAN layer.""" y = [self.cv1(x)] y.extend(m(y[-1]) for m in self.m) if self.gamma is not None: return x + (self.gamma * self.cv2(torch.cat(y, 1)).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return self.cv2(torch.cat(y, 1))

        模型结构图如下:


后续明天再写 — 。— !

标签:

YOLOv12从入门到入土(含结构图)由讯客互联IT业界栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“YOLOv12从入门到入土(含结构图)