主页 > 手机  > 

基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN提升病害检测能力

基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN提升病害检测能力

💡💡💡本文摘要:基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN性能分别从mAP0.5从原始的0.815提升至0.818和0.831

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.草莓病害数据集介绍

数据集大小一共1450张,类别如下

names: ['Angular Leafspot', 'Anthracnose Fruit Rot', 'Blossom Blight', 'Gray Mold', 'Leaf Spot', 'Powdery Mildew Fruit'] 2.1数据集划分

通过split_train_val.py得到trainval.txt、val.txt、test.txt  

# coding:utf-8 import os import random import argparse parser = argparse.ArgumentParser() #xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下 parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path') #数据集的划分,地址选择自己数据下的ImageSets/Main parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path') opt = parser.parse_args() trainval_percent = 0.9 train_percent = 0.7 xmlfilepath = opt.xml_path txtsavepath = opt.txt_path total_xml = os.listdir(xmlfilepath) if not os.path.exists(txtsavepath): os.makedirs(txtsavepath) num = len(total_xml) list_index = range(num) tv = int(num * trainval_percent) tr = int(tv * train_percent) trainval = random.sample(list_index, tv) train = random.sample(trainval, tr) file_trainval = open(txtsavepath + '/trainval.txt', 'w') file_test = open(txtsavepath + '/test.txt', 'w') file_train = open(txtsavepath + '/train.txt', 'w') file_val = open(txtsavepath + '/val.txt', 'w') for i in list_index: name = total_xml[i][:-4] + '\n' if i in trainval: file_trainval.write(name) if i in train: file_train.write(name) else: file_val.write(name) else: file_test.write(name) file_trainval.close() file_train.close() file_val.close() file_test.close()  2.2 通过voc_label.py得到适合yolov8训练需要的 # -*- coding: utf-8 -*- import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join sets = ['train','val','test'] classes = ['Angular Leafspot', 'Anthracnose Fruit Rot', 'Blossom Blight', 'Gray Mold', 'Leaf Spot', 'Powdery Mildew Fruit'] def convert(size, box): dw = 1. / size[0] dh = 1. / size[1] x = (box[0] + box[1]) / 2.0 y = (box[2] + box[3]) / 2.0 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def convert_annotation(image_id): in_file = open('Annotations/%s.xml' % (image_id)) out_file = open('labels/%s.txt' % (image_id), 'w') tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w, h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') wd = getcwd() print(wd) for image_set in sets: if not os.path.exists('labels/'): os.makedirs('labels/') image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split() list_file = open('%s.txt' % (image_set), 'w') for image_id in image_ids: list_file.write('images/%s.jpg\n' % (image_id)) convert_annotation(image_id) list_file.close() 3.训练结果分析

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系。

 

4.优化创新 4.1加入EMA注意力机制

 并行子结构帮助网络避免更多的顺序处理和大深度。给定上述并行处理策略,我们在EMA模块中采用它。EMA的整体结构如图3 (b)所示。在本节中,我们将讨论EMA如何在卷积操作中不进行通道降维的情况下学习有效的通道描述,并为高级特征图产生更好的像素级注意力。具体来说,我们只从CA模块中挑选出1x1卷积的共享组件,在我们的EMA中将其命名为1x1分支。为了聚合多尺度空间结构信息,将3x3内核与1x1分支并行放置以实现快速响应,我们将其命名为3x3分支。考虑到特征分组和多尺度结构,有效地建立短期和长程依赖有利于获得更好的性能。

Yolov8改进---注意力机制:ICASSP2023 EMA基于跨空间学习的高效多尺度注意力、效果优于ECA、CBAM、CA | 小目标涨点明显-CSDN博客

mAP0.5从原始的0.815提升至0.818 

4.2 加入GPFN

  FPN旨在对CNN骨干网络提取的不同分辨率的多尺度特征进行融合。上图给出了FPN的进化,从最初的FPN到PANet再到BiFPN。我们注意到:这些FPN架构仅聚焦于特征融合,缺少了块内连接。因此,我们设计了一种新的路径融合GFPN:包含跳层与跨尺度连接,见上图d。

Yolov8改进:小目标到大目标一网打尽,轻骨干重Neck的轻量级目标检测器GiraffeDet-CSDN博客

实验结果:

mAP0.5从原始的0.815提升至0.831

标签:

基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN提升病害检测能力由讯客互联手机栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“基于YOLOv8的草莓病害检测,加入EMA注意力和GPFN提升病害检测能力