使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(爬虫模块篇)
- 手机
- 2025-09-03 23:09:03

6.环境配置 python=3.9 langchain==0.1.13 langchain-community==0.0.29 torch==2.0.1 transformers>=4.38.2 timm>=0.9.16 accelerate sentencepiece attrdict einops # for gradio demo gradio==3.48.0 gradio-client==0.6.1 mdtex2html==1.3.0 pypinyin==0.50.0 tiktoken==0.5.2 tqdm==4.64.0 colorama==0.4.5 Pygments==2.12.0 markdown==3.4.1 SentencePiece==0.1.96 requests fake_useragent hashlib playwright
其中playwright安装后需要安装对应的浏览器驱动,使用
playwright install进行安装。
7.模块实现 7.1. 代理池建立目的:获取代理IP,用于爬取数据时使用,频繁使用本地的IP地址可能会导致IP被封禁。本文仅供展示,因此仅选取部分免费的代理IP爬取建立线程池,免费的代理IP大多数质量不高,因此需要定期更新代理池或使用付费代理。
实现思路: - 1.读取json文件中的代理IP获取网址,因为网址的每一页包含多条代理IP,并且网址的每一页的URL格式相同,因此可以采用多线程的方式快速获取所有代理IP。将获取到的代理IP存入txt文件中,每日定时更新。 - 2.模拟人为请求,在爬取过程中模拟访问浏览器,而非单纯使用request库发起请求,避免被网站封禁。
代码实现:
from playwright.sync_api import sync_playwright import time import random from fake_useragent import UserAgent import json from concurrent.futures import ThreadPoolExecutor def fetch_ip(url): """每个线程使用独立的浏览器实例""" with sync_playwright() as p: try: # 初始化浏览器实例 browser = p.chromium.launch( headless=True, args=[ '--disable-blink-features=AutomationControlled', '--no-sandbox', '--disable-setuid-sandbox' ] ) # 创建新的上下文 context = browser.new_context( user_agent=get_stealth_headers()['User-Agent'], viewport={'width': 1920, 'height': 1080}, extra_http_headers=get_stealth_headers() ) # 反检测脚本 context.add_init_script(""" Object.defineProperty(navigator, 'webdriver', { get: () => undefined }) """) page = context.new_page() # 随机鼠标移动 page.mouse.move( random.randint(0, 1920), random.randint(0, 1080) ) # 访问页面 page.goto(url, timeout=60000) # 随机滚动 for _ in range(random.randint(1, 3)): page.mouse.wheel(0, random.randint(300, 800)) time.sleep(0.5) # 等待表格加载 page.wait_for_selector('table tbody tr', timeout=15000) # 解析数据 rows = page.query_selector_all('table tbody tr') ip_list = [] for row in rows: try: ip = row.query_selector('td:first-child').inner_text().strip() port = row.query_selector('td:nth-child(2)').inner_text().strip() ip_list.append(f'{ip}:{port}') except: continue return ip_list except Exception as e: print(f'请求 {url} 失败: {str(e)}') return [] finally: # 确保资源释放 if 'page' in locals(): page.close() if 'context' in locals(): context.close() if 'browser' in locals(): browser.close() def get_stealth_headers(): ua = UserAgent() config = json.load(open('docs/ip_crawl_config.json', 'r', encoding='utf-8')) return { 'User-Agent': ua.random, 'Accept-Language': 'en-US,en;q=0.9', 'Referer': config['referer'] } def main(): config = json.load(open('docs/ip_crawl_config.json', 'r', encoding='utf-8')) base_url = config['base_url'] urls = [f'{base_url}/{page_num}/' for page_num in range(1, 20)] with ThreadPoolExecutor(max_workers=4) as executor: results = executor.map(fetch_ip, urls) with open('proxies.txt', 'w', encoding='utf-8') as f: total = 0 for idx, ip_list in enumerate(results, 1): if ip_list: f.write('\n'.join(ip_list) + '\n') print(f'第 {idx} 页获取到 {len(ip_list)} 条代理') total += len(ip_list) print(f'共获取 {total} 条代理') if __name__ == '__main__': main() 7.2. 数据爬取目的:获取所要生成文案的相关数据,本项目所需要的是商品市场分析的有关数据,因此需要爬取对应平台以及第三方网站。
实现思路: - 1.分析网站数据爬取思路,若网站数据为静态加载,固定格式,可以直接通过python中的网页分析库进行爬取,例如beautifulsoup4等。 - 2.由于本项目所需爬取的网站结构相对复杂,因此使用了抓包的方式进行爬取。爬虫过程涉及js逆向分析,需要分析js代码,找到数据来源,通过python的requests库进行数据爬取。(感兴趣的朋友可以查看我先前发的文章,有详细讲解js逆向分析的过程) - 3.爬取数据后,对数据进行清洗,去除无用数据,将数据存储到本地json文件,方便后续使用。
代码实现:
''' Author: yeffky Date: 2025-02-09 17:18:05 LastEditTime: 2025-02-15 15:33:48 ''' import requests import random import time import json from fake_useragent import UserAgent import hashlib import time from datetime import datetime # 定义md5加密函数 def md5_hash(s): return hashlib.md5(s.encode('utf-8')).hexdigest() # Le函数,类似于JS中的Le函数 def getAuth(e): # 第一次MD5,将输入转换为字符串并计算MD5 first_md5 = hashlib.md5(str(e).encode()).hexdigest() # 拼接字符串并第二次计算MD5 second_md5 = hashlib.md5(combined.encode()).hexdigest() return second_md5 def get_random_proxy(): # 尝试打开名为 'proxies.txt' 的文件 try: with open('proxies.txt', 'r') as f: # 读取文件内容并按行分割成列表 proxies = f.read().splitlines() # 如果列表不为空,则随机选择一个代理并返回 if proxies: return random.choice(proxies) # 如果文件不存在,则捕获 FileNotFoundError 异常并忽略 except FileNotFoundError: pass # 如果文件不存在或列表为空,则返回 None return None def remove_invalid_proxy(proxy): # 尝试执行以下代码块,如果发生异常则跳转到except块 try: # 打开名为'proxies.txt'的文件,以读取模式('r') with open('proxies.txt', 'r') as f: proxies = f.read().splitlines() if proxy in proxies: # 检查传入的proxy是否在proxies列表中 proxies.remove(proxy) with open('proxies.txt', 'w') as f: f.write('\n'.join(proxies) + '\n') except FileNotFoundError: pass def make_request(url, payload, auth, timestamp): # 创建一个UserAgent对象,用于生成随机的User-Agent字符串 ua = UserAgent() headers = {'User-Agent': ua.random, 'Auth': str(auth), 'Timestamp': str(timestamp), "Content-Type":"application/json",} proxy = get_random_proxy() # 获取一个随机的代理 proxies = {'http': proxy, 'https': proxy} if proxy else None try: response = requests.post( url, headers=headers, timeout=10, proxies=proxies, json=payload, # verify=False ) response.raise_for_status() print(response) return response.json() except requests.exceptions.RequestException as e: print(f"Request failed: {e}") # If the request failed, remove the invalid proxy if proxy: remove_invalid_proxy(proxy) # Try a new proxy return None def crawl_data(): # 加载爬虫配置文件 crawal_config = json.load(open('./docs/crawl_config.json', 'r')) base_url = crawal_config['base_url'] # 获取基础URL payload = crawal_config['payload'] # 获取请求负载 response_text = None while not response_text: # Retry until the request is successful # 时间戳 t = int((time.time()) * 1000) # 获取当前时间戳(毫秒) auth = getAuth(t) response_text = make_request(base_url, payload, auth, t) if not response_text: print("Retrying with a new proxy...") time.sleep(random.randint(3, 5)) # Add a small delay before retrying try: data = response_text items_list = data.get('data', {}).get('list', []) # 获取今天的日期 today_date = datetime.now().strftime('%Y-%m-%d') # 在文件名后加上今天的日期 filename = f'goods_{today_date}.json' cnt = 0 with open(f'data/{filename}', 'w', encoding='utf-8') as f: f.write('{"items": [' + '\n') for item in items_list: item['商品涨幅'] = item.pop('Priceincrease') item['商品成交量'] = item.pop('SaleCount') item['商品名称'] = item.pop('GoodsName') item['商品最低价'] = item.pop('price') item['商品图标'] = item.pop('iconUrl') cnt += 1 item_str = json.dumps(item, ensure_ascii=False, indent=2) if cnt == len(items_list): f.write(item_str + '\n') else: f.write(item_str + ',\n\n') f.write(']}' + '\n') print(f"Successfully wrote {len(items_list)} items to goods.txt") except json.JSONDecodeError: print("Failed to decode JSON response") if __name__ == "__main__": crawl_data()使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(爬虫模块篇)由讯客互联手机栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(爬虫模块篇)”