用deepseek学大模型08-cnn残差网络
- 手机
- 2025-09-01 22:24:01

残差网络
参考: blog.csdn.net/2301_80750681/article/details/142882802
以下是使用PyTorch实现的三层残差网络示例,包含三个残差块和完整的网络结构:
import torch import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet3Layer(nn.Module): def __init__(self, num_classes=10): super(ResNet3Layer, self).__init__() self.in_channels = 64 # 初始卷积层 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # 三个残差块 self.layer1 = self._make_layer(BasicBlock, 64, 1, stride=1) self.layer2 = self._make_layer(BasicBlock, 128, 1, stride=2) self.layer3 = self._make_layer(BasicBlock, 256, 1, stride=2) # 分类层 self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(256 * BasicBlock.expansion, num_classes) def _make_layer(self, block, out_channels, blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * block.expansion) ) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels * block.expansion for _ in range(1, blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x # 示例用法 model = ResNet3Layer(num_classes=10) print(model)关键实现细节说明:
残差块设计:每个BasicBlock包含两个3×3卷积层,通过downsample参数处理维度匹配问题网络结构: 初始卷积层(7×7卷积)用于提取基础特征最大池化层进行初步下采样三个残差块分别实现64→128→256通道的特征提取全局平均池化替代全连接层减少参数量 维度匹配:通过1×1卷积调整shortcut连接的维度,保证残差相加的有效性参数配置: 每个残差块的步长(stride)分别为1、2、2,实现特征图尺寸的逐步缩小使用Batch Normalization加速训练收敛该网络适用于CIFAR-10等小尺寸图像分类任务,可通过调整num_classes参数适配不同数据集。实际训练时建议配合数据增强和正则化技术。
残差网络的数学推导核心在于其残差映射设计和梯度传播特性,主要包含以下关键点:
1. 残差前向传播公式残差块的基本结构可表示为: x l + 1 = x l + F ( x l , W l ) \mathbf{x}_{l+1} = \mathbf{x}_l + \mathcal{F}(\mathbf{x}_l, \mathbf{W}_l) xl+1=xl+F(xl,Wl) 其中:
x l \mathbf{x}_l xl:第 l l l层的输入 F \mathcal{F} F:残差函数(通常包含卷积、BN、激活等操作) W l \mathbf{W}_l Wl:可学习参数对于 L L L层深度网络,累积表达式为: x L = x 0 + ∑ i = 0 L − 1 F ( x i , W i ) \mathbf{x}_L = \mathbf{x}_0 + \sum_{i=0}^{L-1} \mathcal{F}(\mathbf{x}_i, \mathbf{W}_i) xL=x0+i=0∑L−1F(xi,Wi) 这表明深层特征可分解为浅层特征与残差之和
2. 反向传播梯度推导通过链式法则计算梯度: ∂ L ∂ x l = ∂ L ∂ x L ⋅ ∏ i = l L − 1 ( 1 + ∂ F ( x i , W i ) ∂ x i ) \frac{\partial \mathcal{L}}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}_L} \cdot \prod_{i=l}^{L-1} \left( 1 + \frac{\partial \mathcal{F}(\mathbf{x}_i, \mathbf{W}_i)}{\partial \mathbf{x}_i} \right) ∂xl∂L=∂xL∂L⋅i=l∏L−1(1+∂xi∂F(xi,Wi)) 其中:
常数项1保证梯度直接传递(恒等映射路径)残差项 ∂ F ∂ x i \frac{\partial \mathcal{F}}{\partial \mathbf{x}_i} ∂xi∂F通过权重层传播 3. 解决梯度问题的数学机制当残差项趋近于0时: ∂ L ∂ x l ≈ ∂ L ∂ x L ⋅ 1 \frac{\partial \mathcal{L}}{\partial \mathbf{x}_l} \approx \frac{\partial \mathcal{L}}{\partial \mathbf{x}_L} \cdot 1 ∂xl∂L≈∂xL∂L⋅1 即使深层梯度 ∂ L ∂ x L \frac{\partial \mathcal{L}}{\partial \mathbf{x}_L} ∂xL∂L较小,浅层仍能获得有效梯度更新,从根本上缓解梯度消失问题
4. 网络退化问题的解决假设最优映射为 H ∗ ( x ) H^*(x) H∗(x),传统网络需直接拟合: H ( x ) = H ∗ ( x ) H(x) = H^*(x) H(x)=H∗(x) 而残差网络改为拟合: F ( x ) = H ∗ ( x ) − x \mathcal{F}(x) = H^*(x) - x F(x)=H∗(x)−x 这使得当 F ( x ) = 0 \mathcal{F}(x)=0 F(x)=0时,网络退化为恒等映射,保证性能不劣化
5. 维度匹配的数学处理当输入输出维度不匹配时,引入1×1卷积: y = F ( x , W i ) + W s x \mathbf{y} = \mathcal{F}(\mathbf{x}, \mathbf{W}_i) + \mathbf{W}_s\mathbf{x} y=F(x,Wi)+Wsx 其中 W s \mathbf{W}_s Ws为线性变换矩阵,保证残差相加的维度一致性
通过上述数学设计,残差网络实现了:
梯度稳定传播(反向过程)深层特征的有效累积(前向过程)网络退化现象的根本性解决残差网络(ResNet)相比普通直接卷积网络的核心优势体现在以下方面:
1. 解决梯度消失与网络退化问题通过跳跃连接(Shortcut Connection)的残差结构,反向传播时梯度可绕过非线性层直接传递。数学上,第 l l l层的梯度为: ∂ L ∂ x l = ∂ L ∂ x L ⋅ ∏ i = l L − 1 ( 1 + ∂ F ( x i , W i ) ∂ x i ) \frac{\partial \mathcal{L}}{\partial x_l} = \frac{\partial \mathcal{L}}{\partial x_L} \cdot \prod_{i=l}^{L-1} \left( 1 + \frac{\partial F(x_i, W_i)}{\partial x_i} \right) ∂xl∂L=∂xL∂L⋅i=l∏L−1(1+∂xi∂F(xi,Wi)) 当残差项 ∂ F ∂ x i ≈ 0 \frac{\partial F}{\partial x_i} \approx 0 ∂xi∂F≈0时,梯度 ∂ L ∂ x l ≈ ∂ L ∂ x L \frac{\partial \mathcal{L}}{\partial x_l} \approx \frac{\partial \mathcal{L}}{\partial x_L} ∂xl∂L≈∂xL∂L,避免链式求导的指数衰减。
2. 优化目标简化残差网络学习残差映射 F ( x ) = H ( x ) − x F(x) = H(x) - x F(x)=H(x)−x,而非直接学习目标函数 H ( x ) H(x) H(x)。当最优映射接近恒等变换时,残差 F ( x ) → 0 F(x) \to 0 F(x)→0比直接学习 H ( x ) → x H(x) \to x H(x)→x更容易收敛。
3. 支持极深网络结构普通CNN在超过20层时会出现性能退化(训练/测试误差同时上升),而ResNet通过残差块堆叠可构建超过1000层的网络,且准确率随深度增加持续提升(如ResNet-152在ImageNet上Top-5错误率仅3.57%)。
4. 参数效率与计算优化 维度调整:使用1×1卷积调整通道数,参数量仅需 C i n × C o u t C_{in} \times C_{out} Cin×Cout,远少于3×3卷积的 9 C i n C o u t 9C_{in}C_{out} 9CinCout。瓶颈结构:通过“1×1→3×3→1×1”的Bottleneck设计(如ResNet-50),在保持性能的同时减少计算量。 5. 实际性能优势 分类任务:ResNet-50在ImageNet上的Top-1准确率达76.5%,比VGG-16提升约8%。训练效率:引入BN层后,ResNet训练速度比普通CNN快2-3倍,且收敛更稳定。 对比总结 特性普通CNNResNet最大有效深度~20层>1000层梯度传播稳定性易消失/爆炸通过跳跃连接稳定训练误差随深度变化先降后升(退化)持续下降参数量(同精度)较高更低(瓶颈结构)这些设计使得ResNet成为计算机视觉任务的基础架构,广泛应用于图像分类、目标检测等领域。
以下是使用PyTorch实现的残差网络(ResNet)在MNIST手写数字识别中的示例:
import torch import torch.nn as nn import torchvision.transforms as transforms from torchvision.datasets import MNIST from torch.utils.data import DataLoader class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.conv2 = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_channels) ) self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride), nn.BatchNorm2d(out_channels) ) def forward(self, x): residual = self.shortcut(x) out = self.conv1(x) out = self.conv2(out) out += residual out = nn.ReLU()(out) return out class ResNetMNIST(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), nn.ReLU() ) self.res_blocks = nn.Sequential( ResidualBlock(64, 64), ResidualBlock(64, 128, stride=2), ResidualBlock(128, 256, stride=2) ) self.fc = nn.Sequential( nn.AdaptiveAvgPool2d((1,1)), nn.Flatten(), nn.Linear(256, 10) ) def forward(self, x): x = self.conv1(x) x = self.res_blocks(x) x = self.fc(x) return x # 数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载数据集 train_set = MNIST(root='./data', train=True, download=True, transform=transform) test_set = MNIST(root='./data', train=False, download=True, transform=transform) # 创建数据加载器 train_loader = DataLoader(train_set, batch_size=128, shuffle=True) test_loader = DataLoader(test_set, batch_size=128, shuffle=False) # 初始化模型和优化器 model = ResNetMNIST() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() # 训练循环 for epoch in range(10): model.train() for images, labels in train_loader: outputs = model(images) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() # 测试准确率 model.eval() correct = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) correct += (predicted == labels).sum().item() acc = 100 * correct / len(test_set) print(f'Epoch {epoch+1}, Test Accuracy: {acc:.2f}%')关键实现细节说明:
残差块设计:每个残差块包含两个3×3卷积层,通过shortcut连接处理维度变化网络结构: 初始卷积层(3×3)提取基础特征三个残差块实现64→128→256通道的特征提取全局平均池化替代全连接层减少参数量 数据预处理: 标准化处理: μ = 0.1307 \mu=0.1307 μ=0.1307, σ = 0.3081 \sigma=0.3081 σ=0.3081输入维度:1×28×28(通道×高×宽) 训练配置: Adam优化器(学习率0.001)交叉熵损失函数批量大小128,训练10个epoch该模型在MNIST测试集上通常能达到**99%+**的准确率。实际训练时可添加数据增强(随机旋转、平移)提升泛化能力,或使用学习率调度器优化收敛过程。
用deepseek学大模型08-cnn残差网络由讯客互联手机栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“用deepseek学大模型08-cnn残差网络”