主页 > 软件开发  > 

DeepSeek和ChatGPT的全面对比

DeepSeek和ChatGPT的全面对比
一、模型基础架构对比(2023技术版本) 维度DeepSeekChatGPT模型家族LLAMA架构改进GPT-4优化版本参数量级开放7B/35B/120B闭源175B+位置编码RoPE + NTK扩展ALiBiAttention机制FlashAttention-3FlashAttention-2激活函数SwiGLU ProGeGLU训练框架DeepSpeed+Megatron定制内部框架上下文窗口32k(可扩展128k)8k-32k # 架构对比样例(Attention计算差异) class DeepSeekAttention(nn.Module): def __init__(self): self.attn_mode = "grouped_query" # 8组kv头 class ChatGPTAttention(nn.Module): def __init__(self): self.attn_mode = "multi-head" # 标准多头
二、训练数据与算力对比 指标DeepSeekChatGPT预训练tokens2.5T (中英75%/25%)1.8T (多语言混合)数据筛选机制七级质量过滤体系闭源清洗流程SFT数据量150M对话样本100M+ RLHF数据训练硬件4096卡H800集群10,000+ V100集群训练成本~$15M (35B模型)~$60M (GPT-3.5) #mermaid-svg-UaIBmqUaYW41HNZu {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-UaIBmqUaYW41HNZu .error-icon{fill:#552222;}#mermaid-svg-UaIBmqUaYW41HNZu .error-text{fill:#552222;stroke:#552222;}#mermaid-svg-UaIBmqUaYW41HNZu .edge-thickness-normal{stroke-width:2px;}#mermaid-svg-UaIBmqUaYW41HNZu .edge-thickness-thick{stroke-width:3.5px;}#mermaid-svg-UaIBmqUaYW41HNZu .edge-pattern-solid{stroke-dasharray:0;}#mermaid-svg-UaIBmqUaYW41HNZu .edge-pattern-dashed{stroke-dasharray:3;}#mermaid-svg-UaIBmqUaYW41HNZu .edge-pattern-dotted{stroke-dasharray:2;}#mermaid-svg-UaIBmqUaYW41HNZu .marker{fill:#333333;stroke:#333333;}#mermaid-svg-UaIBmqUaYW41HNZu .marker.cross{stroke:#333333;}#mermaid-svg-UaIBmqUaYW41HNZu svg{font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;}#mermaid-svg-UaIBmqUaYW41HNZu .pieCircle{stroke:black;stroke-width:2px;opacity:0.7;}#mermaid-svg-UaIBmqUaYW41HNZu .pieTitleText{text-anchor:middle;font-size:25px;fill:black;font-family:"trebuchet ms",verdana,arial,sans-serif;}#mermaid-svg-UaIBmqUaYW41HNZu .slice{font-family:"trebuchet ms",verdana,arial,sans-serif;fill:#333;font-size:17px;}#mermaid-svg-UaIBmqUaYW41HNZu .legend text{fill:black;font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:17px;}#mermaid-svg-UaIBmqUaYW41HNZu :root{--mermaid-font-family:"trebuchet ms",verdana,arial,sans-serif;}
三、核心性能评测 1. 基准测试(百分制) 测试集DeepSeek-35BChatGPT-3.5MMLU78.270.1C-Eval85.463.2GSM8k82.785.3HumanEval67.372.8TruthfulQA58.161.4 2. 推理效率 指标DeepSeek (A100)ChatGPT APITokens/秒3200900首token延迟120ms350ms显存占用(7B)14GB-
四、功能特色对比 1. 代码生成能力 # 示例:生成快速排序代码 DeepSeek输出: def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr)//2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ChatGPT输出: def quicksort(array): if len(array) < 2: return array else: pivot = array[0] less = [i for i in array[1:] if i <= pivot] greater = [i for i in array[1:] if i > pivot] return quicksort(less) + [pivot] + quicksort(greater)

差异分析:DeepSeek更偏向工程实践(使用中间位置基准值),ChatGPT选择首位元素但缺少相等元素处理

2. 数学解题步骤

题目:解方程 x² + 2x - 15 = 0

DeepSeek解答:

步骤1:识别方程类型 → 二次方程 步骤2:应用求根公式 x = [-b ± √(b²-4ac)]/(2a) 步骤3:代入a=1,b=2,c=-15 判别式D = 2² - 4*1*(-15) = 64 步骤4:计算根 → (-2±8)/2 → x1=3, x2=-5

ChatGPT解答:

整理方程 → x² + 2x = 15 配方:x² + 2x +1 = 16 → (x+1)^2 = 16 开平方 → x+1=±4 → x=3或x=-5

方法论差异:DeepSeek展示标准解法,ChatGPT优先使用配方法


五、商业化应用对比 维度DeepSeekChatGPT API私有部署支持本地化部署仅云端API微调支持LoRA/QLoRA全流程工具有限提示工程调节成本模型开源免费(需合规)$0.002/1k tokens企业级功能提供知识库适配工具企业版对话管理界面合规认证通过等保三级认证SOC2 Type II合规 # 典型部署配置对比 DeepSeek: inference_server: vLLM + Triton hardware: 2*A100(80G) throughput: 1500req/s ChatGPT: endpoint: api.openai /v1/chat rate_limit: 3000TPM SLA: 99.9%可用性
六、开发者支持体系 支持项DeepSeek社区OpenAI生态系统调试工具提供Attention热力图可视化工具API Playground监控系统Prometheus+DeepSeek ExporterCloudwatch集成模型压缩支持8bit/4bit量化转换仅提供davinci-002文档质量中文文档覆盖90%功能英文文档更完整SDK支持Python/Java/GoPython/Node.js
七、技术路线差异 #mermaid-svg-22OOkx05mhXJ6OWd {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-22OOkx05mhXJ6OWd .error-icon{fill:#552222;}#mermaid-svg-22OOkx05mhXJ6OWd .error-text{fill:#552222;stroke:#552222;}#mermaid-svg-22OOkx05mhXJ6OWd .edge-thickness-normal{stroke-width:2px;}#mermaid-svg-22OOkx05mhXJ6OWd .edge-thickness-thick{stroke-width:3.5px;}#mermaid-svg-22OOkx05mhXJ6OWd .edge-pattern-solid{stroke-dasharray:0;}#mermaid-svg-22OOkx05mhXJ6OWd .edge-pattern-dashed{stroke-dasharray:3;}#mermaid-svg-22OOkx05mhXJ6OWd .edge-pattern-dotted{stroke-dasharray:2;}#mermaid-svg-22OOkx05mhXJ6OWd .marker{fill:#333333;stroke:#333333;}#mermaid-svg-22OOkx05mhXJ6OWd .marker.cross{stroke:#333333;}#mermaid-svg-22OOkx05mhXJ6OWd svg{font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;}#mermaid-svg-22OOkx05mhXJ6OWd .label{font-family:"trebuchet ms",verdana,arial,sans-serif;color:#333;}#mermaid-svg-22OOkx05mhXJ6OWd .cluster-label text{fill:#333;}#mermaid-svg-22OOkx05mhXJ6OWd .cluster-label span{color:#333;}#mermaid-svg-22OOkx05mhXJ6OWd .label text,#mermaid-svg-22OOkx05mhXJ6OWd span{fill:#333;color:#333;}#mermaid-svg-22OOkx05mhXJ6OWd .node rect,#mermaid-svg-22OOkx05mhXJ6OWd .node circle,#mermaid-svg-22OOkx05mhXJ6OWd .node ellipse,#mermaid-svg-22OOkx05mhXJ6OWd .node polygon,#mermaid-svg-22OOkx05mhXJ6OWd .node path{fill:#ECECFF;stroke:#9370DB;stroke-width:1px;}#mermaid-svg-22OOkx05mhXJ6OWd .node .label{text-align:center;}#mermaid-svg-22OOkx05mhXJ6OWd .node.clickable{cursor:pointer;}#mermaid-svg-22OOkx05mhXJ6OWd .arrowheadPath{fill:#333333;}#mermaid-svg-22OOkx05mhXJ6OWd .edgePath .path{stroke:#333333;stroke-width:2.0px;}#mermaid-svg-22OOkx05mhXJ6OWd .flowchart-link{stroke:#333333;fill:none;}#mermaid-svg-22OOkx05mhXJ6OWd .edgeLabel{background-color:#e8e8e8;text-align:center;}#mermaid-svg-22OOkx05mhXJ6OWd .edgeLabel rect{opacity:0.5;background-color:#e8e8e8;fill:#e8e8e8;}#mermaid-svg-22OOkx05mhXJ6OWd .cluster rect{fill:#ffffde;stroke:#aaaa33;stroke-width:1px;}#mermaid-svg-22OOkx05mhXJ6OWd .cluster text{fill:#333;}#mermaid-svg-22OOkx05mhXJ6OWd .cluster span{color:#333;}#mermaid-svg-22OOkx05mhXJ6OWd div.mermaidTooltip{position:absolute;text-align:center;max-width:200px;padding:2px;font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:12px;background:hsl(80, 100%, 96.2745098039%);border:1px solid #aaaa33;border-radius:2px;pointer-events:none;z-index:100;}#mermaid-svg-22OOkx05mhXJ6OWd :root{--mermaid-font-family:"trebuchet ms",verdana,arial,sans-serif;} DeepSeek路线: 开源可控 工程技术优化 行业解决方案 可信AI ChatGPT路线: 效果突破 商业模式创新 生态构建 AGI探索
典型应用建议 场景推荐选择原因企业私有知识库DeepSeek支持本地部署和微调全球化多语言客服ChatGPT支持50+语言科研数值计算DeepSeek开放Modelinging模块快速原型开发ChatGPT API分钟级集成能力敏感数据处理DeepSeek完整数据控制链
标签:

DeepSeek和ChatGPT的全面对比由讯客互联软件开发栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“DeepSeek和ChatGPT的全面对比