【cuda学习日记】5.3减少全局内存访问
- 人工智能
- 2025-09-13 05:33:02

在第3章讨论过的并行归约问题
5.3.1 使用共享内存进行并行归约 reduceGmem – 使用全局内存作为基准 reduceSmem – 使用共享内存
#include <cuda_runtime.h> #include <stdio.h> #include "../common/common.h" #include <iostream> #define DIM 128 int recursiveReduce(int *data, int const size){ if (size == 1) return data[0]; int const stride = size /2; for (int i = 0; i < stride; i ++){ data[i] += data[i + stride]; } return recursiveReduce( data, stride); } __global__ void warmup( int *g_idata, int *g_odata, unsigned int n){ unsigned int tid = threadIdx.x; int *idata = g_idata + blockIdx.x * blockDim.x; unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx >= n) return; if (blockDim.x >= 1024 && tid < 512) idata[tid] += idata[tid+ 512]; __syncthreads(); if (blockDim.x >= 512 && tid < 256) idata[tid] += idata[tid+ 256]; __syncthreads(); if (blockDim.x >= 256 && tid < 128) idata[tid] += idata[tid+ 128]; __syncthreads(); if (blockDim.x >= 128 && tid < 64) idata[tid] += idata[tid+ 64]; __syncthreads(); if (tid < 32){ volatile int *vmem = idata; vmem[tid] += vmem[tid + 32]; vmem[tid] += vmem[tid + 16]; vmem[tid] += vmem[tid + 8]; vmem[tid] += vmem[tid + 4]; vmem[tid] += vmem[tid + 2]; vmem[tid] += vmem[tid + 1]; } if (tid == 0){ g_odata[blockIdx.x] = idata[0];} } __global__ void reduceGmem( int *g_idata, int *g_odata, unsigned int n){ unsigned int tid = threadIdx.x; int *idata = g_idata + blockIdx.x * blockDim.x; unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx >= n) return; if (blockDim.x >= 1024 && tid < 512) idata[tid] += idata[tid+ 512]; __syncthreads(); if (blockDim.x >= 512 && tid < 256) idata[tid] += idata[tid+ 256]; __syncthreads(); if (blockDim.x >= 256 && tid < 128) idata[tid] += idata[tid+ 128]; __syncthreads(); if (blockDim.x >= 128 && tid < 64) idata[tid] += idata[tid+ 64]; __syncthreads(); if (tid < 32){ volatile int *vmem = idata; vmem[tid] += vmem[tid + 32]; vmem[tid] += vmem[tid + 16]; vmem[tid] += vmem[tid + 8]; vmem[tid] += vmem[tid + 4]; vmem[tid] += vmem[tid + 2]; vmem[tid] += vmem[tid + 1]; } if (tid == 0){ g_odata[blockIdx.x] = idata[0];} } __global__ void reduceSmem(int *g_idata, int *g_odata, unsigned int n){ __shared__ int smem[DIM]; unsigned int tid = threadIdx.x; // convert global data pointer to local pointer int *idata = g_idata + blockIdx.x * blockDim.x; unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx >= n) return; //set to smem by each threads smem[tid] = idata[tid]; __syncthreads(); if (blockDim.x >= 1024 && tid < 512) smem[tid] += smem[tid+ 512]; __syncthreads(); if (blockDim.x >= 512 && tid < 256) smem[tid] += smem[tid+ 256]; __syncthreads(); if (blockDim.x >= 256 && tid < 128) smem[tid] += smem[tid+ 128]; __syncthreads(); if (blockDim.x >= 128 && tid < 64) smem[tid] += smem[tid+ 64]; __syncthreads(); if (tid < 32){ volatile int *vsmem = smem; vsmem[tid] += vsmem[tid + 32]; vsmem[tid] += vsmem[tid + 16]; vsmem[tid] += vsmem[tid + 8]; vsmem[tid] += vsmem[tid + 4]; vsmem[tid] += vsmem[tid + 2]; vsmem[tid] += vsmem[tid + 1]; } if (tid == 0){ g_odata[blockIdx.x] = smem[0];} } int main(int argc , char **argv) { printf("%s starting\n", argv[0]); int dev = 0; cudaDeviceProp deviceprop; CHECK(cudaGetDeviceProperties(&deviceprop,dev)); printf("Using Device %d : %s\n", dev, deviceprop.name); int size = 1 << 24; int blocksize = 512; if (argc > 1){ blocksize = atoi(argv[1]); } dim3 block(DIM, 1); // 1d dim3 grid ((size + block.x - 1) / block.x, 1); size_t nBytes = size * sizeof(int); int * h_idata = (int*) malloc(nBytes); int * h_odata = (int*) malloc( grid.x * sizeof(int)); //you duoshao ge block int * temp = (int*) malloc(nBytes); //initial the array for (int i = 0 ; i < size;i++){ h_idata[i] = (int)(rand() & 0xff); } int sum = 0; for (int i = 0 ; i < size;i++){ sum += h_idata[i]; } printf("sum value is : %d\n", sum); memcpy(temp, h_idata, nBytes); int gpu_sum = 0; int *d_idata = NULL; int *d_odata = NULL; cudaMalloc((void**)&d_idata, nBytes); cudaMalloc((void**)&d_odata, grid.x * sizeof(int)); //cpu sum Timer timer; timer.start(); int cpu_sum = recursiveReduce(temp, size); timer.stop(); float elapsedTime = timer.elapsedms(); printf("cpu reduce time: %f, sum: %d\n", elapsedTime, cpu_sum); //gpu sum cudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice); cudaDeviceSynchronize(); timer.start(); warmup<<<grid.x, block>>>(d_idata, d_odata, size); cudaDeviceSynchronize(); timer.stop(); float elapsedTime1 = timer.elapsedms(); cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost); gpu_sum = 0; for (int i = 0; i < grid.x; i ++){ gpu_sum += h_odata[i]; } printf("warm up reduce time: %f, sum: %d\n", elapsedTime1, gpu_sum); //gpu sum cudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice); cudaDeviceSynchronize(); timer.start(); reduceGmem<<<grid.x, block>>>(d_idata, d_odata, size); cudaDeviceSynchronize(); timer.stop(); elapsedTime1 = timer.elapsedms(); cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost); gpu_sum = 0; for (int i = 0; i < grid.x ; i ++){ gpu_sum += h_odata[i]; } printf("reduceGmem gpu reduce time: %f, sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x , block.x); //gpu sum cudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice); cudaDeviceSynchronize(); timer.start(); reduceSmem<<<grid.x, block>>>(d_idata, d_odata, size); cudaDeviceSynchronize(); timer.stop(); elapsedTime1 = timer.elapsedms(); cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost); gpu_sum = 0; for (int i = 0; i < grid.x ; i ++){ gpu_sum += h_odata[i]; } printf("reduceSmem gpu reduce time: %f, sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x , block.x); cudaFree(d_idata); cudaFree(d_odata); cudaDeviceReset(); free(h_idata); free(h_odata); free(temp); return 0; }通过nsys profile 程序: nsys profile --stats=true reduce.exe 输出:
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name -------- --------------- --------- -------- -------- -------- -------- ----------- -------------------------------------- 39.8 134721 1 134721.0 134721.0 134721 134721 0.0 warmup(int *, int *, unsigned int) 38.0 128385 1 128385.0 128385.0 128385 128385 0.0 reduceGmem(int *, int *, unsigned int) 22.2 75040 1 75040.0 75040.0 75040 75040 0.0 reduceSmem(int *, int *, unsigned int)5.3.2 展开
展开的核函数以及调用:
__global__ void reduceSmemUnroll(int *g_idata, int *g_odata, unsigned int n){ __shared__ int smem[DIM]; unsigned int tid = threadIdx.x; // convert global data pointer to local pointer int *idata = g_idata + blockIdx.x * blockDim.x; unsigned int idx = blockIdx.x * blockDim.x * 4 + threadIdx.x; //unrolling 4 blocks int tmpSum = 0; if (idx + 3 * blockDim.x <= n){ int a1 = g_idata[idx]; int a2 = g_idata[idx + blockDim.x]; int a3 = g_idata[idx + 2 * blockDim.x]; int a4 = g_idata[idx + 3 * blockDim.x]; tmpSum = a1 + a2 + a3 + a4; } //set to smem by each threads smem[tid] = tmpSum; __syncthreads(); if (blockDim.x >= 1024 && tid < 512) smem[tid] += smem[tid+ 512]; __syncthreads(); if (blockDim.x >= 512 && tid < 256) smem[tid] += smem[tid+ 256]; __syncthreads(); if (blockDim.x >= 256 && tid < 128) smem[tid] += smem[tid+ 128]; __syncthreads(); if (blockDim.x >= 128 && tid < 64) smem[tid] += smem[tid+ 64]; __syncthreads(); if (tid < 32){ volatile int *vsmem = smem; vsmem[tid] += vsmem[tid + 32]; vsmem[tid] += vsmem[tid + 16]; vsmem[tid] += vsmem[tid + 8]; vsmem[tid] += vsmem[tid + 4]; vsmem[tid] += vsmem[tid + 2]; vsmem[tid] += vsmem[tid + 1]; } if (tid == 0){ g_odata[blockIdx.x] = smem[0];} } // 调用 cudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice); cudaDeviceSynchronize(); timer.start(); reduceSmemUnroll<<<grid.x /4 , block>>>(d_idata, d_odata, size); cudaDeviceSynchronize(); timer.stop(); elapsedTime1 = timer.elapsedms(); cudaMemcpy(h_odata, d_odata, grid.x /4 * sizeof(int),cudaMemcpyDeviceToHost); gpu_sum = 0; for (int i = 0; i < grid.x / 4 ; i ++){ gpu_sum += h_odata[i]; } printf("reduceSmemUnroll gpu reduce time: %f, sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x / 4, block.x);nsys输出:
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name -------- --------------- --------- -------- -------- -------- -------- ----------- -------------------------------------------- 34.6 135329 1 135329.0 135329.0 135329 135329 0.0 warmup(int *, int *, unsigned int) 33.0 129056 1 129056.0 129056.0 129056 129056 0.0 reduceGmem(int *, int *, unsigned int) 25.6 99968 1 99968.0 99968.0 99968 99968 0.0 reduceSmem(int *, int *, unsigned int) 6.7 26335 1 26335.0 26335.0 26335 26335 0.0 reduceSmemUnroll(int *, int *, unsigned int)5.3.3 动态共享内存
//动态声明 extern __shared__ int smem[]; //调用 reduceSmemUnrollDyn<<<grid.x /4 , block, DIM * sizeof(int)>>>(d_idata, d_odata, size);发现用动态分配共享内存实现的核函数和用静态分配共享内存实现的核函数之间没有显著的差异。
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name -------- --------------- --------- -------- -------- -------- -------- ----------- ----------------------------------------------- 35.2 135009 1 135009.0 135009.0 135009 135009 0.0 warmup(int *, int *, unsigned int) 33.5 128576 1 128576.0 128576.0 128576 128576 0.0 reduceGmem(int *, int *, unsigned int) 19.5 74753 1 74753.0 74753.0 74753 74753 0.0 reduceSmem(int *, int *, unsigned int) 5.9 22752 1 22752.0 22752.0 22752 22752 0.0 reduceSmemUnroll(int *, int *, unsigned int) 5.9 22752 1 22752.0 22752.0 22752 22752 0.0 reduceSmemUnrollDyn(int *, int *, unsigned int)【cuda学习日记】5.3减少全局内存访问由讯客互联人工智能栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“【cuda学习日记】5.3减少全局内存访问”