Leetcode37:解数独
- 其他
- 2025-09-14 13:48:01

Leetcode 37: 解数独 是经典的回溯算法问题,考察如何利用递归和剪枝高效求解数独问题。这题主要考察对回溯、递归、深度优先搜索 (DFS)、剪枝优化等算法思想的掌握。
题目描述
给定一个部分填充的数独(9 x 9)网格,用一个有效的算法将其完整解出。
数独规则: 每一行必须包含数字 1-9,不重复。每一列必须包含数字 1-9,不重复。每个 3x3 的子盒子必须包含数字 1-9,不重复。示例输入输出 输入: board = [["5","3",".",".","7",".",".",".","."] ["6",".",".","1","9","5",".",".","."] [".","9","8",".",".",".",".","6","."] ["8",".",".",".","6",".",".",".","3"] ["4",".",".","8",".","3",".",".","1"] ["7",".",".",".","2",".",".",".","6"] [".","6",".",".",".",".","2","8","."] [".",".",".","4","1","9",".",".","5"] [".",".",".",".","8",".",".","7","9"]] 输出: [["5","3","4","6","7","8","9","1","2"] ["6","7","2","1","9","5","3","4","8"] ["1","9","8","3","4","2","5","6","7"] ["8","5","9","7","6","1","4","2","3"] ["4","2","6","8","5","3","7","9","1"] ["7","1","3","9","2","4","8","5","6"] ["9","6","1","5","3","7","2","8","4"] ["2","8","7","4","1","9","6","3","5"] ["3","4","5","2","8","6","1","7","9"]]
解法 1:回溯法 思路 深度优先搜索: 使用 DFS 遍历整个棋盘,每次找到未填的空格,尝试填入 1-9。若当前数字导致冲突(不合法),回溯到上一步重新尝试。 填充判断: 判断当前数字是否能加入当前行、列、以及 3x3 小方格中,确保满足数独规则。 终止条件: 当所有空格填满时,返回 true。若在当前路径中所有数均无合法选择,则返回 false(触发回溯)。
代码模板 class Solution { public void solveSudoku(char[][] board) { backtrack(board); } private boolean backtrack(char[][] board) { for (int i = 0; i < 9; i++) { for (int j = 0; j < 9; j++) { if (board[i][j] == '.') { for (char num = '1'; num <= '9'; num++) { if (isValid(board, i, j, num)) { board[i][j] = num; // 尝试填入数字 if (backtrack(board)) return true; board[i][j] = '.'; // 回溯 } } return false; // 如果 1~9 都不行,返回 false,触发回溯 } } } return true; // 如果没有剩下的空格,说明填满了 } private boolean isValid(char[][] board, int row, int col, char num) { for (int i = 0; i < 9; i++) { // 检查行和列是否出现重复 if (board[row][i] == num || board[i][col] == num) return false; // 检查 3x3 小方格是否出现重复 int boxRow = 3 * (row / 3) + i / 3; int boxCol = 3 * (col / 3) + i % 3; if (board[boxRow][boxCol] == num) return false; } return true; } }
复杂度分析 时间复杂度: 最坏情况下为 O(9^(n)),其中 n 是未填格子数。每个空格尝试填入 1-9 的数字。 空间复杂度: O(n)(递归调用栈的深度)。
适用场景 经典数独问题的首选解法,清晰易实现。回溯法逻辑直观,可以快速实现并 AC。
解法 2:回溯 + 剪枝(预处理加速) 思路
在基础回溯解法的基础上,添加剪枝优化,通过记录数字的使用情况,避免重复判断,加快搜索速度。
状态记录: 使用三个布尔数组分别记录某个数字是否已在当前 行、列 或 3x3 子盒子 中出现。例如,rows[i][num] 表示数字 num+1 是否出现在第 i 行。 选择联合撤销: 每次填一个数字时,更新状态记录;回溯时撤销状态,确保合法性。代码模板 class Solution { private boolean[][] rows = new boolean[9][9]; private boolean[][] cols = new boolean[9][9]; private boolean[][] boxes = new boolean[9][9]; public void solveSudoku(char[][] board) { // 初始化状态 for (int i = 0; i < 9; i++) { for (int j = 0; j < 9; j++) { if (board[i][j] != '.') { int num = board[i][j] - '1'; rows[i][num] = true; cols[j][num] = true; boxes[boxIndex(i, j)][num] = true; } } } backtrack(board, 0, 0); } private boolean backtrack(char[][] board, int row, int col) { // 如果列越界,换到下一行 if (col == 9) { col = 0; row++; if (row == 9) return true; // 全部填完 } // 如果当前位置已填,跳过 if (board[row][col] != '.') { return backtrack(board, row, col + 1); } // 尝试填入数字 for (int num = 0; num < 9; num++) { if (!rows[row][num] && !cols[col][num] && !boxes[boxIndex(row, col)][num]) { board[row][col] = (char) ('1' + num); rows[row][num] = true; cols[col][num] = true; boxes[boxIndex(row, col)][num] = true; if (backtrack(board, row, col + 1)) return true; // 回溯撤销选择 board[row][col] = '.'; rows[row][num] = false; cols[col][num] = false; boxes[boxIndex(row, col)][num] = false; } } return false; } private int boxIndex(int row, int col) { return (row / 3) * 3 + col / 3; } }
复杂度分析 时间复杂度: 种类减少后,搜索复杂度为 O(9^n),但剪枝优化显著降低实际运行时间。 空间复杂度: O(1)(记录数字使用情况固定为 9x9 布尔数组)。
适用场景 适用于案例比较复杂时(如接近空棋盘),高效减小搜索空间。真正需要性能优化的场景下,剪枝效果显著。
解法 3:位运算优化(进一步压缩空间) 思路
剪枝进一步优化,用整数的位运算代替布尔数组进行数字记录。
代码模板略
快速 AC 策略 回溯法(解法 1) 是首选: 逻辑清晰,易于实现。面试中推荐以此为基础解答,并补充优化思路。 回溯 + 剪枝(解法 2) 在性能要求高时选择: 提前记录状态,避免重复判断。 理解位运算优化的原理,在深度优化场景中进一步探索改进。
总结:经典回溯 + 剪枝思想可以轻松快速地应对数独问题,并在面试中充分展示对搜索问题的理解!
Leetcode37:解数独由讯客互联其他栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“Leetcode37:解数独”
上一篇
              详解LSM树
 
               
               
               
               
               
               
               
   
   
   
   
  ![每日一题---四数相加II[力扣][Go]](/0pic/pp_78.jpg) 
   
   
   
   
  