STM32HAL库USART串口中断编程:演示数据丢失
- IT业界
- 2025-09-05 09:33:01

目录
一、开发环境
二、配置STM32CubeMX
三、代码实现与部署
四、运行结果:
五、注意事项
上面讨论过,HAL_UART_Receive最容易丢数据了,可以考虑用中断来实现,但是HAL_UART_Receive_IT还不能直接用,容易数据丢失,实际工作中不会这样用,本文介绍STM32F103 HAL库函数使用并指出问题,下一篇再解释解决方案:加入环形缓冲区.
主要是两个函数的调用和实现.HAL_UART_Receive_IT和HAL_UART_RxCpltCallback(huart)
1.HAL_UART_Receive_IT:UART 并不会自动继续下一轮的接收中断配置,需要再调用重新开启HAL_UART_Receive_IT(&huart1, &g_RecvChar, 1).只是使能了中断,会启动一次中断接收,不代表收到数据了.接收1字节实时性更强,灵活性,占内存更少。
2.HAL_UART_RxCpltCallback(huart);在回调函数设置标志位,告诉已经传输完毕了.
从源头到调用回调函数的调用过程, USART1_IRQHandler->void USART1_IRQHandler(void)->void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)-> UART_Receive_IT(huart)-> __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE)-> HAL_UART_RxCpltCallback(huart);
一、开发环境硬件:正点原子精英版 V2 STM32F103开发板
单片机:STM32F103ZET6
Keil版本:5.32
STM32CubeMX版本:6.9.2
STM32Cube MCU Packges版本:STM32F1xx_DFP.2.4.1 串口:USART1(PA9,PA10)
二、配置STM32CubeMX1.启动STM32CubeMX,新建STM32CubeMX项目:
2.选择MCU:在软件中选择你的STM32型号-STM32F103ZET6。
3.选择时钟源:
4.配置时钟:
5.使能Debug功能:Serial Wire
6.HAL库时基选择:SysTick
7.USART1配置:选择异步模式,使能中断。
8.配置工程参数:在Project标签页中,配置项目名称和位置,选择工具链MDK-ARM。 9.生成代码:在Code Generator标签页中,配置工程外设文件与HAL库,勾选头文件.c和.h文件分开,然后点击Project > Generate Code生成代码。
三、代码实现与部署main.c增加代码:
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include <string.h> /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ extern UART_HandleTypeDef huart1; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void Wait_Rx_Complete(void); char *str= "hello\r\n"; char c; /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ HAL_UART_Transmit(&huart1,str,strlen(str),1000); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ HAL_UART_Receive_IT(&huart1,&c,1); Wait_Rx_Complete(); HAL_UART_Transmit(&huart1, &c, 1, 1000); //HAL_UART_Transmit(&huart1, "\r\n", 2, 1000); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */2.usa rt.c增加代码
/* USER CODE BEGIN 1 */ static volatile int g_rx_cplt = 0; void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { g_rx_cplt=1; } void Wait_Rx_Complete(void) { while (g_rx_cplt == 0); g_rx_cplt = 0; } /* USER CODE END 1 */3.连接USART1:用USB转TTL工具连接当前硬件USART1的PA9、PA10,GND。
4.打开串口助手:
5.编译代码:Keil编译生成的代码。
6.烧录程序:将编译好的程序用ST-LINK烧录到STM32微控制器中。
四、运行结果:1. 屏蔽HAL_UART_Transmit(&huart1, "\r\n", 2, 1000)时候,程序编译烧录完成并运行,复位打印hello,发送1234567890时候,打印"1234567890". 正常. 2. 不屏蔽HAL_UART_Transmit(&huart1, "\r\n", 2, 1000),一旦程序烧录完成并运行,复位打印hello,发送1234567890时候,打印"1258",原因调用HAL_UART_Transmit()耗时大,没能及时的打开HAL_UART_Receive_IT中断接收数据,导致数据丢失.
五、注意事项1.确保你的开发环境和工具已经正确安装和配置。
2.如果没有打印,按一下复位键,检查连接和电源是否正确,注意根据你所用的硬件来接线,不要接错线。 3.在串口打印数据时,要确保波特率等参数与串口助手设置一致。
通过上述步骤,介绍STM32F103 HAL库函数HAL_UART_Receive_IT的使用并指出数据丢失问题,下一篇再解释解决方案:加入环形缓冲区.
STM32HAL库USART串口中断编程:演示数据丢失由讯客互联IT业界栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“STM32HAL库USART串口中断编程:演示数据丢失”
下一篇
Meta正在押注人形机器人领域