主页 > 互联网  > 

LeetCode0132.分割回文串II:动态规划

LeetCode0132.分割回文串II:动态规划
【LetMeFly】132.分割回文串 II:动态规划

力扣题目链接: leetcode /problems/palindrome-partitioning-ii/

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文串。

返回符合要求的 最少分割次数 。

 

示例 1:

输入:s = "aab" 输出:1 解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。

示例 2:

输入:s = "a" 输出:0

示例 3:

输入:s = "ab" 输出:1

 

提示:

1 <= s.length <= 2000s 仅由小写英文字母组成 解题方法:动态规划

整个过程分为两步:预处理 和 动态规划

动态规划:

使用数组 d p dp dp,其中 d p [ i ] dp[i] dp[i]代表使得子字符串 0... i 0...i 0...i为回文字符串组合的最小分割次数,那么 d p [ l e n ( s ) − 1 ] dp[len(s) - 1] dp[len(s)−1]即为答案。

如果 0... i 0...i 0...i直接为回文字符串,那么分割次数为0。

否则,对于 j ∈ 0... i − 1 j\in 0...i-1 j∈0...i−1,如果 j + 1.. i j + 1..i j+1..i是回文字符串,那么有 d p [ i ] = m i n ( d p [ j ] + 1 ) dp[i] = min(dp[j] + 1) dp[i]=min(dp[j]+1)

预处理:

有没有什么办法 O ( 1 ) O(1) O(1)时间内快速判断下标从 i i i到 j j j的子字符串是否为回文字符串?有,我们可以先使用 O ( n 2 ) O(n^2) O(n2)复杂度的时间预处理。使用 i s O k [ i ] [ j ] isOk[i][j] isOk[i][j]表示子字符串 i . . . j i...j i...j是否为回文字符串:

如果子字符串为空或者长度为1,则是回文字符串( i ≥ j i \geq j i≥j)否则:是回文字符串当且仅当 s [ i ] = = s [ j ]  AND  i s O k [ i + 1 ] [ j − 1 ] s[i] == s[j] \text{ AND }isOk[i + 1][j - 1] s[i]==s[j] AND isOk[i+1][j−1] 时空复杂度分析 时间复杂度 O ( n 2 ) O(n^2) O(n2),预处理和动态规划的时间复杂度都是 O ( n 2 ) O(n^2) O(n2)。其中 n = l e n ( s ) n = len(s) n=len(s)空间复杂度 O ( n 2 ) O(n^2) O(n2) AC代码 C++ /* * @Author: LetMeFly * @Date: 2025-03-02 12:02:45 * @LastEditors: LetMeFly.xyz * @LastEditTime: 2025-03-02 12:26:06 */ class Solution { public: int minCut(string s) { vector<vector<bool>> isOk(s.size(), vector<bool>(s.size(), true)); for (int i = s.size() - 1; i >= 0; i--) { for (int j = i + 1; j < s.size(); j++) { isOk[i][j] = s[i] == s[j] && isOk[i + 1][j - 1]; } } vector<int> dp(s.size(), 1000000); for (int i = 0; i < s.size(); i++) { if (isOk[0][i]) { dp[i] = 0; continue; } for (int j = 0; j < i; j++) { if (isOk[j + 1][i]) { dp[i] = min(dp[i], dp[j] + 1); } } } return dp.back(); } }; Python ''' Author: LetMeFly Date: 2025-03-02 12:26:57 LastEditors: LetMeFly.xyz LastEditTime: 2025-03-02 12:33:40 ''' class Solution: def minCut(self, s: str) -> int: isOk = [[True] * len(s) for _ in range(len(s))] for i in range(len(s) - 1, -1, -1): for j in range(i + 1, len(s)): isOk[i][j] = s[i] == s[j] and isOk[i + 1][j - 1] dp = [100000] * len(s) for i in range(len(s)): if isOk[0][i]: dp[i] = 0 continue for j in range(i): if isOk[j + 1][i]: dp[i] = min(dp[i], dp[j] + 1) return dp[-1] Java /* * @Author: LetMeFly * @Date: 2025-03-02 12:34:31 * @LastEditors: LetMeFly.xyz * @LastEditTime: 2025-03-02 12:38:17 */ class Solution { public int minCut(String s) { boolean[][] isOk = new boolean[s.length()][s.length()]; for (int i = 0; i < s.length(); i++) { for (int j = 0; j < s.length(); j++) { isOk[i][j] = true; } } for (int i = s.length() - 1; i >= 0; i--) { for (int j = i + 1; j < s.length(); j++) { isOk[i][j] = s.charAt(i) == s.charAt(j) && isOk[i + 1][j - 1]; } } int[] dp = new int[s.length()]; for (int i = 0; i < s.length(); i++) { dp[i] = 100000; } for (int i = 0; i < s.length(); i++) { if (isOk[0][i]) { dp[i] = 0; continue; } for (int j = 0; j < i; j++) { if (isOk[j + 1][i]) { dp[i] = Math.min(dp[i], dp[j] + 1); } } } return dp[dp.length - 1]; } } Go /* * @Author: LetMeFly * @Date: 2025-03-02 12:39:13 * @LastEditors: LetMeFly.xyz * @LastEditTime: 2025-03-02 12:43:12 */ package main func minCut(s string) int { isOk := make([][]bool, len(s)) for i, _ := range isOk { isOk[i] = make([]bool, len(s)) for j, _ := range isOk[i] { isOk[i][j] = true } } for i := len(s) - 1; i >= 0; i-- { for j := i + 1; j < len(s); j++ { isOk[i][j] = s[i] == s[j] && isOk[i + 1][j - 1] } } dp := make([]int, len(s)) for i, _ := range dp { dp[i] = 100000 } for i := 0; i < len(dp); i++ { if isOk[0][i] { dp[i] = 0 continue } for j := 0; j < i; j++ { if isOk[j + 1][i] { dp[i] = min(dp[i], dp[j] + 1) } } } return dp[len(dp) - 1] }

同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~

千篇源码题解已开源

标签:

LeetCode0132.分割回文串II:动态规划由讯客互联互联网栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“LeetCode0132.分割回文串II:动态规划