【个人开发】deepspeed+Llama-factory本地数据多卡Lora微调
- 电脑硬件
- 2025-09-06 16:48:01

文章目录 1.背景2.微调方式2.1 关键环境版本信息2.2 步骤2.2.1 下载llama-factory2.2.2 准备数据集2.2.3 微调模式2.2.3.1 zero-3微调2.2.3.2 zero-2微调2.2.3.3 单卡Lora微调 2.3 踩坑经验2.3.1 问题一:ValueError: Undefined dataset xxxx in dataset_info.json.2.3.2 问题二: ValueError: Target modules {'c_attn'} not found in the base model. Please check the target modules and try again.2.3.3 问题三: RuntimeError: The size of tensor a (1060864) must match the size of tensor b (315392) at non-singleton dimension 0。2.3.4 问题四: 训练效率问题 2.4 实验2.4.1 实验1:多GPU微调-zero22.4.2 实验2:多GPU微调-zero32.4.3 实验3:Lora单卡微调 3 合并大模型并启动3.1 方法一:Llama-factory合并,并使用ollama调用大模型3.2 方法二:Llama-factory合并,并使用vllm启动模型服务 1.背景
上一篇文件写到,macbook微调Lora,该微调方式,同样适用于GPU,只不过在train.py脚本中,针对device,调整为cuda即可。
但如果数据量过大的话,单卡微调会存在瓶颈,因此考虑多GPU进行微调。网上找了一圈,多卡微调的常用方式采用deepspeed+Llama-factory。
本文主要记录该方式的微调情况,仅为个人学习记录
2.微调方式 2.1 关键环境版本信息 模块版本python3.10CUDA12.6torch2.5.1peft0.12.0transformers4.46.2accelerate1.1.1trl0.9.6deepspeed0.15.4 2.2 步骤 2.2.1 下载llama-factory git clone --depth 1 github /hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]" 2.2.2 准备数据集数据集采用网上流传的《甄嬛传》,数据集结构如下,数据集命名【huanhuan.json】
[ { "instruction": "小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——", "input": "", "output": "嘘——都说许愿说破是不灵的。" }, ... ]其次,还得准备数据集信息【dataset_info.json】,因为是本地微调,所以微调时现访问dataset_info,再指定到具体的数据集中。
{ "identity": { "file_name": "test_data.json" } }注意文本的数据集的格式必须为,json,不然会报错。
2.2.3 微调模式 2.2.3.1 zero-3微调本次微调采用zero-3的方式,因此在LLaMa-Factory目录下,新增配置文件【ds_config_zero3.json】。
相关配置可参考【./LLaMA-Factory/examples/deepspeed/文件夹下的样例】
配置如下【ds_config_zero3.json】
{ "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "none", "pin_memory": true }, "offload_param": { "device": "none", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 100, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }微调脚本
# run_train_bash.sh #!/bin/bash # 记录开始时间 START=$(date +%s.%N) CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch src/train.py \ --deepspeed ds_config_zero3.json \ --stage sft \ --do_train True \ --model_name_or_path /root/ai_project/fine-tuning-by-lora/models/model/qwen/Qwen2___5-7B-Instruct \ --finetuning_type lora \ --template qwen \ --dataset_dir /root/ai_project/fine-tuning-by-lora/dataset/ \ --dataset identity \ --cutoff_len 1024 \ --num_train_epochs 5 \ --max_samples 100000 \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 4 \ --lr_scheduler_type cosine \ --learning_rate 5e-04 \ --lr_scheduler_type cosine \ --max_grad_norm 1.0 \ --logging_steps 5 \ --save_steps 100 \ --neftune_noise_alpha 0 \ --lora_rank 8 \ --lora_dropout 0.1 \ --lora_alpha 32 \ --lora_target q_proj,v_proj,k_proj,gate_proj,up_proj,o_proj,down_proj \ --output_dir ./output/qwen_7b_ds/train_2025_02_13 \ --bf16 True \ --plot_loss True # 记录结束时间 END=$(date +%s.%N) # 计算运行时间 DUR=$(echo "$END - $START" | bc) # 输出运行时间 printf "Execution time: %.6f seconds\n" $DUR说明一下上述一些关键参数:
参数版本–deepspeed指定deepspeed加速微调方式–model_name_or_path微调模型路径–finetuning_type微调方式,这里用lora微调–template训练和推理时构造 prompt 的模板,不同大语言模型的模板不一样,这里用的是qwen–dataset_dir本地的数据集路径–dataset指定dataset_info.json中哪个数据集–lora_target应用 LoRA 方法的模块名称。–output_dir模型输出路径。模型微调参数可以参考:Llama-Factory参数介绍
其他参数,其实就是常规使用peft进行lora微调的常见参数,以及常见的微调参数,可以对照如下。
lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) 2.2.3.2 zero-2微调zero-2下述的配置中,调度器使用了AdamW,学习率在训练时候可以逐步下降。
配置如下【ds_config_zero2.json】
{ "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": true } }, "gradient_accumulation_steps": 4, "gradient_clipping": "auto", "steps_per_print": 100, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } 2.2.3.3 单卡Lora微调具体使用可以参考上一篇文章:【个人开发】macbook m1 Lora微调qwen大模型 也可以参考github项目:fine-tuning-by-Lora
微调代码如下。
torch_dtype = torch.half lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) def train(): # 加载模型 model_dir = snapshot_download(model_id=model_id, cache_dir=f"{models_dir}/model", revision='master') if model_path != model_dir: raise Exception(f"model_path:{model_path} != model_dir:{model_dir}") model = AutoModelForCausalLM.from_pretrained(model_path,device_map=device, torch_dtype=torch_dtype) model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法 # 加载数据 df = pd.read_json(dataset_file) ds = Dataset.from_pandas(df) print(ds[:3]) # 处理数据 tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token def process_func(item): MAX_LENGTH = 384 # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性 input_ids, attention_mask, labels = [], [], [] instruction = tokenizer( f"<|start_header_id|>user<|end_header_id|>\n\n{item['instruction'] + item['input']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens response = tokenizer(f"{item['output']}<|eot_id|>", add_special_tokens=False) input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id] attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] # 因为eos token咱们也是要关注的所以 补充为1 labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id] if len(input_ids) > MAX_LENGTH: # 做一个截断 input_ids = input_ids[:MAX_LENGTH] attention_mask = attention_mask[:MAX_LENGTH] labels = labels[:MAX_LENGTH] return { "input_ids": input_ids, "attention_mask": attention_mask, "labels": labels } tokenized_id = ds.map(process_func, remove_columns=ds.column_names) tokenizer.decode(list(filter(lambda x: x != -100, tokenized_id[1]["labels"]))) # 加载lora权重 model = get_peft_model(model, lora_config) # 训练模型 training_args = TrainingArguments( output_dir=checkpoint_dir, per_device_train_batch_size=4, gradient_accumulation_steps=4, logging_steps=5, num_train_epochs=30, save_steps=100, learning_rate=5e-04, save_on_each_node=True, gradient_checkpointing=True, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_id, data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True), ) trainer.train() # 保存模型 trainer.model.save_pretrained(lora_dir) tokenizer.save_pretrained(lora_dir) 2.3 踩坑经验 2.3.1 问题一:ValueError: Undefined dataset xxxx in dataset_info.json.如果你脚本的启动参数,–dataset identity。而dataset_info.json中的数据信息,没有“identity”这个key,则会出现这个报错,只要确保你dataset_info.json中存在该key即可。
2.3.2 问题二: ValueError: Target modules {‘c_attn’} not found in the base model. Please check the target modules and try again.如果你脚本的启动参数,–lora_target参数设为常见的c_attn参数,则会报此错。处理方式还是调整参数,使用Lora微调时的常见参数,q_proj,v_proj,k_proj,gate_proj,up_proj,o_proj,down_proj。注意格式,如果格式不对,还是会报错。
2.3.3 问题三: RuntimeError: The size of tensor a (1060864) must match the size of tensor b (315392) at non-singleton dimension 0。这种tensor的问题,很可能是模型冲突的问题,比如调到一半,然后重新提调,指到相同的路径。重新指定output路径即可。
2.3.4 问题四: 训练效率问题在GPU充分的情况下,使用zero_2的训练效率,很明显比zero_3的训练效率更快!
2.4 实验本次测试使用多GPU微调,测试多GPU微调跟单GPU微调的性能对比。
使用2,030条数据,epoch = 30 ,batch size = 4,Gradient Accumulation steps = 4
实验组实验类别耗时最终loss实验1zero2微调09:590.4757实验2zero3微调1:49:110.0746实验3单卡lora微调【待补充】【待补充】 2.4.1 实验1:多GPU微调-zero2使用2,030条数据,8卡微调,微调参数如下,总共480步,耗时09:59。
[INFO|trainer.py:2369] 2025-02-17 12:53:54,461 >> ***** Running training ***** [INFO|trainer.py:2370] 2025-02-17 12:53:54,461 >> Num examples = 2,030 [INFO|trainer.py:2371] 2025-02-17 12:53:54,461 >> Num Epochs = 30 [INFO|trainer.py:2372] 2025-02-17 12:53:54,461 >> Instantaneous batch size per device = 4 [INFO|trainer.py:2375] 2025-02-17 12:53:54,461 >> Total train batch size (w. parallel, distributed & accumulation) = 128 [INFO|trainer.py:2376] 2025-02-17 12:53:54,461 >> Gradient Accumulation steps = 4 [INFO|trainer.py:2377] 2025-02-17 12:53:54,461 >> Total optimization steps = 480 [INFO|trainer.py:2378] 2025-02-17 12:53:54,465 >> Number of trainable parameters = 20,185,088 ***** train metrics ***** epoch = 30.0 total_flos = 234733999GF train_loss = 1.6736 train_runtime = 0:09:59.38 train_samples_per_second = 101.605 train_steps_per_second = 0.801 Figure saved at: ./output/qwen_7b_ft/zero2/training_loss.pngGPU使用情况如下: 损失下降情况:
2.4.2 实验2:多GPU微调-zero3使用2,030条数据,8卡微调,微调参数如下,总共480步,耗时1:49:11。
[INFO|trainer.py:2369] 2025-02-17 13:07:48,438 >> ***** Running training ***** [INFO|trainer.py:2370] 2025-02-17 13:07:48,438 >> Num examples = 2,030 [INFO|trainer.py:2371] 2025-02-17 13:07:48,438 >> Num Epochs = 30 [INFO|trainer.py:2372] 2025-02-17 13:07:48,438 >> Instantaneous batch size per device = 4 [INFO|trainer.py:2375] 2025-02-17 13:07:48,438 >> Total train batch size (w. parallel, distributed & accumulation) = 128 [INFO|trainer.py:2376] 2025-02-17 13:07:48,438 >> Gradient Accumulation steps = 4 [INFO|trainer.py:2377] 2025-02-17 13:07:48,438 >> Total optimization steps = 480 [INFO|trainer.py:2378] 2025-02-17 13:07:48,442 >> Number of trainable parameters = 20,185,088 ... ***** train metrics ***** epoch = 30.0 total_flos = 257671GF train_loss = 0.3719 train_runtime = 1:49:11.88 train_samples_per_second = 9.295 train_steps_per_second = 0.073 Figure saved at: ./output/qwen_7b_ft/zero3/training_loss.png [WARNING|2025-02-17 14:57:11] llamafactory.extras.ploting:162 >> No metric eval_loss to plot. [WARNING|2025-02-17 14:57:11] llamafactory.extras.ploting:162 >> No metric eval_accuracy to plot. [INFO|modelcard.py:449] 2025-02-17 14:57:11,629 >> Dropping the following result as it does not have all the necessary fields:GPU使用情况如下:
损失下降情况:
2.4.3 实验3:Lora单卡微调【待补充】
3 合并大模型并启动 3.1 方法一:Llama-factory合并,并使用ollama调用大模型模型合并
利用Llama-factory的框架,配置llama3_lora_sft_qwen.yaml 文件,进行模型合并。
# llama3_lora_sft_qwen.yaml ### model model_name_or_path: /root/ai_project/fine-tuning-by-lora/models/model/qwen/Qwen2___5-7B-Instruct adapter_name_or_path: /root/ai_project/LLaMA-Factory/output/qwen_7b_ds/zero2/ template: qwen trust_remote_code: true ### export export_dir: output/llama3_lora_sft_qwen export_size: 5 export_device: gpu export_legacy_format: false llamafactory-cli export llama3_lora_sft_qwen.yaml模型打包
合并完成后,会有直接生成Modelfile文件,可以直接打包到ollama中。
# ollama modelfile auto-generated by llamafactory FROM . TEMPLATE """{{ if .System }}<|im_start|>system {{ .System }}<|im_end|> {{ end }}{{ range .Messages }}{{ if eq .Role "user" }}<|im_start|>user {{ .Content }}<|im_end|> <|im_start|>assistant {{ else if eq .Role "assistant" }}{{ .Content }}<|im_end|> {{ end }}{{ end }}""" SYSTEM """You are a helpful assistant.""" PARAMETER stop "<|im_end|>" PARAMETER num_ctx 4096模型启动 ollama启动
ollama create llama3_lora_sft_qwen -f Modelfile参考文章:大模型开发和微调工具Llama-Factory–>LoRA合并
3.2 方法二:Llama-factory合并,并使用vllm启动模型服务模型的合并同方法一,之后使用vllm命令启动。
vllm命令启动模型服务
# 内置了vllm的qwen的template。 CUDA_VISIBLE_DEVICES=1,2,3,4 python3 -m vllm.entrypoints.openai.api_server \ --model "/root/ai_project/LLaMA-Factory/output/merge/" \ --port 6006 \ --tensor-parallel-size 4 \ --served-model-name Qwen2.5-7B-sft \ --max-model-len 8192 \ --dtype half \ --host 0.0.0.0模型服务接口调用
import requests def chat_with_vllm(prompt, port=6006): url = f"http://localhost:{port}/v1/chat/completions" headers = {"Content-Type": "application/json"} data = { "model": "Qwen2.5-7B-sft", # 模型名称或路径 "messages": [{"role": "user", "content": prompt}], "max_tokens": 512, "temperature": 0.7 } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: result = response.json() generated_text = result["choices"][0]["message"]["content"] print(generated_text.strip()) else: print("Error:", response.status_code, response.text) # 示例调用 chat_with_vllm("你是谁?", port=6006)服务日志: 说明:日志中可以看到template。
调用结果:
【个人开发】deepspeed+Llama-factory本地数据多卡Lora微调由讯客互联电脑硬件栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“【个人开发】deepspeed+Llama-factory本地数据多卡Lora微调”