主页 > 创业  > 

Elasticsearch:将Ollama与推理API结合使用

Elasticsearch:将Ollama与推理API结合使用

作者:来自 Elastic Jeffrey Rengifo

Ollama API 与 OpenAI API 兼容,因此将 Ollama 与 Elasticsearch 集成非常容易。

在本文中,我们将学习如何使用 Ollama 将本地模型连接到 Elasticsearch 推理模型,然后使用 Playground 向文档提出问题。

Elasticsearch 允许用户使用开放推理 API(Inference API)连接到 LLMs,支持 Amazon Bedrock、Cohere、Google AI、Azure AI Studio、HuggingFace 等提供商(作为服务)等。

Ollama 是一个工具,允许你使用自己的基础设施(本地机器/服务器)下载和执行 LLM 模型。你可以在此处找到与 Ollama 兼容的可用型号列表。

如果你想要托管和测试不同的开源模型,而又不必担心每个模型需要以不同的方式设置,或者如何创建 API 来访问模型功能,那么 Ollama 是一个不错的选择,因为 Ollama 会处理所有事情。

由于 Ollama API 与 OpenAI API 兼容,我们可以轻松集成推理模型并使用 Playground 创建 RAG 应用程序。

更多阅读,请参阅 “Elasticsearch:在 Elastic 中玩转 DeepSeek R1 来实现 RAG 应用”。

先决条件 Elasticsearch 8.17Kibana 8.17Python

步骤 设置 Ollama LLM 服务器创建映射索引数据使用 Playground 提问

设置 Ollama LLM 服务器

我们将设置一个 LLM 服务器,并使用 Ollama 将其连接到我们的 Playground 实例。我们需要:

下载并运行 Ollama。使用 ngrok 通过互联网访问托管 Ollama 的本地 Web 服务器

下载并运行 Ollama

要使用Ollama,我们首先需要下载它。 Ollama 支持 Linux、Windows 和 macOS,因此只需在此处下载与你的操作系统兼容的 Ollama 版本即可。一旦安装了 Ollama,我们就可以从这个受支持的 LLM 列表中选择一个模型。在此示例中,我们将使用 llama3.2 模型,这是一个通用的多语言模型。在安装过程中,你将启用 Ollama 的命令行工具。下载完成后,你可以运行以下行:

ollama pull llama3.2

这将输出:

pulling manifest pulling dde5aa3fc5ff... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 2.0 GB pulling 966de95ca8a6... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 1.4 KB pulling fcc5a6bec9da... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 7.7 KB pulling a70ff7e570d9... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 6.0 KB pulling 56bb8bd477a5... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 96 B pulling 34bb5ab01051... 100% ▕█████████████████████████████████████████████████████████████████████████████████████████▏ 561 B verifying sha256 digest writing manifest success

安装后,你可以使用以下命令进行测试:

ollama run llama3.2

我们来问一个问题:

在模型运行时,Ollama 启用默认在端口 “11434” 上运行的 API。让我们按照官方文档向该 API 发出请求:

curl http://localhost:11434/api/generate -d '{ "model": "llama3.2", "prompt": "What is the capital of France?" }'

这是我们得到的答案:

{"model":"llama3.2","created_at":"2024-11-28T21:48:42.152817532Z","response":"The","done":false} {"model":"llama3.2","created_at":"2024-11-28T21:48:42.251884485Z","response":" capital","done":false} {"model":"llama3.2","created_at":"2024-11-28T21:48:42.347365913Z","response":" of","done":false} {"model":"llama3.2","created_at":"2024-11-28T21:48:42.446837322Z","response":" France","done":false} {"model":"llama3.2","created_at":"2024-11-28T21:48:42.542367394Z","response":" is","done":false} {"model":"llama3.2","created_at":"2024-11-28T21:48:42.644580384Z","response":" Paris","done":false} {"model":"llama3.2","created_at":"2024-11-28T21:48:42.739865362Z","response":".","done":false} {"model":"llama3.2","created_at":"2024-11-28T21:48:42.834347518Z","response":"","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,3923,374,279,6864,315,9822,30,128009,128006,78191,128007,271,791,6864,315,9822,374,12366,13],"total_duration":6948567145,"load_duration":4386106503,"prompt_eval_count":32,"prompt_eval_duration":1872000000,"eval_count":8,"eval_duration":684000000}

请注意,此端点的具体响应是流式传输。

使用 ngrok 将端点暴露给互联网

由于我们的端点在本地环境中工作,因此无法通过互联网从另一个点(如我们的 Elastic Cloud 实例)访问它。 ngrok 允许我们公开提供公共 IP 的端口。在 ngrok 中创建一个帐户并按照官方设置指南进行操作。

注:这个有点类似在中国提供的 “花生壳” 功能。

一旦安装并配置了 ngrok 代理,我们就可以使用以下命令公开 Ollama 端口:

ngrok http 11434 --host-header="localhost:11434"

注意:标头 --host-header="localhost:11434" 保证请求中的 “Host” 标头与 “localhost:11434” 匹配

执行此命令将返回一个公共链接,只要 ngrok 和 Ollama 服务器在本地运行,该链接就会起作用。

Session Status online Account xxxx@yourEmailProvider (Plan: Free) Version 3.18.4 Region United States (us) Latency 561ms Web Interface http://127.0.0.1:4040 Forwarding your-ngrok-url.ngrok-free.app -> http://localhost:11434 Connections ttl opn rt1 rt5 p50 p90 0 0 0.00 0.00 0.00 0.00 ```

在 “Forwarding” 中我们可以看到 ngrok 生成了一个 URL。保存以供以后使用。

让我们再次尝试向端点发出 HTTP 请求,现在使用 ngrok 生成的 URL:

curl your-ngrok-endpoint.ngrok-free.app/api/generate -d '{ "model": "llama3.2", "prompt": "What is the capital of France?" }'

响应应与前一个类似。

创建映射

ELSER 端点

对于此示例,我们将使用 Elasticsearch 推理 API 创建一个推理端点。此外,我们将使用 ELSER 来生成嵌入。

PUT _inference/sparse_embedding/medicines-inference { "service": "elasticsearch", "service_settings": { "num_allocations": 1, "num_threads": 1, "model_id": ".elser_model_2_linux-x86_64" } }

在这个例子中,假设你有一家药店,销售两种类型的药品:

需要处方的药物。不需要处方的药物。

该信息将包含在每种药物的描述字段中。

LLM 必须解释这个字段,因此我们将使用以下数据映射:

PUT medicines { "mappings": { "properties": { "name": { "type": "text", "copy_to": "semantic_field" }, "semantic_field": { "type": "semantic_text", "inference_id": "medicines-inference" }, "text_description": { "type": "text", "copy_to": "semantic_field" } } } }

字段 text_description 将存储描述的纯文本,而 semantic_field(一种 semantic_text 字段类型)将存储由 ELSER 生成的嵌入。

copy_to 属性将把字段 name 和 text_description 中的内容复制到语义字段中,以便生成这些字段的嵌入。

索引数据

现在,让我们使用 _bulk API 对数据进行索引。

POST _bulk {"index":{"_index":"medicines"}} {"id":1,"name":"Paracetamol","text_description":"An analgesic and antipyretic that does NOT require a prescription."} {"index":{"_index":"medicines"}} {"id":2,"name":"Ibuprofen","text_description":"A nonsteroidal anti-inflammatory drug (NSAID) available WITHOUT a prescription."} {"index":{"_index":"medicines"}} {"id":3,"name":"Amoxicillin","text_description":"An antibiotic that requires a prescription."} {"index":{"_index":"medicines"}} {"id":4,"name":"Lorazepam","text_description":"An anxiolytic medication that strictly requires a prescription."} {"index":{"_index":"medicines"}} {"id":5,"name":"Omeprazole","text_description":"A medication for stomach acidity that does NOT require a prescription."} {"index":{"_index":"medicines"}} {"id":6,"name":"Insulin","text_description":"A hormone used in diabetes treatment that requires a prescription."} {"index":{"_index":"medicines"}} {"id":7,"name":"Cold Medicine","text_description":"A compound formula to relieve flu symptoms available WITHOUT a prescription."} {"index":{"_index":"medicines"}} {"id":8,"name":"Clonazepam","text_description":"An antiepileptic medication that requires a prescription."} {"index":{"_index":"medicines"}} {"id":9,"name":"Vitamin C","text_description":"A dietary supplement that does NOT require a prescription."} {"index":{"_index":"medicines"}} {"id":10,"name":"Metformin","text_description":"A medication used for type 2 diabetes that requires a prescription."}

响应:

{ "errors": false, "took": 34732020848, "items": [ { "index": { "_index": "medicines", "_id": "mYoeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 0, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "mooeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 1, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "m4oeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 2, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "nIoeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 3, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "nYoeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 4, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "nooeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 5, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "n4oeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 6, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "oIoeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 7, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "oYoeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 8, "_primary_term": 1, "status": 201 } }, { "index": { "_index": "medicines", "_id": "oooeMpQBF7lnCNFTfdn2", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 9, "_primary_term": 1, "status": 201 } } ] }

使用 Playground 提问

Playground 是一个 Kibana 工具,允许你使用 Elasticsearch 索引和 LLM 提供程序快速创建 RAG 系统。你可以阅读本文以了解更多信息。

将本地 LLM 连接到 Playground

我们首先需要创建一个使用我们刚刚创建的公共 URL 的连接器。在 Kibana 中,转到 Search>Playground,然后单击 “Connect to an LLM”。

此操作将显示 Kibana 界面左侧的菜单。在那里,点击 “OpenAI”。

我们现在可以开始配置 OpenAI 连接器。

转到 “Connector settings”,对于 OpenAI 提供商,选择 “Other (OpenAI Compatible Service)”:

现在,让我们配置其他字段。在这个例子中,我们将我们的模型命名为 “medicines-llm”。在 URL 字段中,使用 ngrok 生成的 URL(/v1/chat/completions)。在 “Default model” 字段中,选择 “llama3.2”。我们不会使用 API 密钥,因此只需输入任何随机文本即可继续:

点击 “Save”,点击 “Add data sources” 添加索引药品:

太棒了!我们现在可以使用在本地运行的 LLM 作为 RAG 引擎来访问 Playground。

在测试之前,让我们向代理添加更具体的指令,并将发送给模型的文档数量增加到 10,以便答案具有尽可能多的可用文档。上下文字段将是 semantic_field,它包括药物的名称和描述,这要归功于 copy_to 属性。

现在让我们问一个问题:Can I buy Clonazepam without a prescription? 看看会发生什么:

drive.google /file/d/1WOg9yJ2Vs5ugmXk9_K9giZJypB8jbxuN/view?usp=drive_link

正如我们所料,我们得到了正确的答案。

后续步骤

下一步是创建你自己的应用程序! Playground 提供了一个 Python 代码脚本,你可以在自己的机器上运行它并自定义它以满足你的需要。例如,通过将其置于 FastAPI 服务器后面来创建由你的 UI 使用的 QA 药品聊天机器人。

你可以通过点击 Playground 右上角的 View code 按钮找到此代码:

并且你使用 Endpoints & API keys 生成代码中所需的 ES_API_KEY 环境变量。

对于此特定示例,代码如下:

## Install the required packages ## pip install -qU elasticsearch openai import os from elasticsearch import Elasticsearch from openai import OpenAI es_client = Elasticsearch( " your-deployment.us-central1.gcp.cloud.es.io:443", api_key=os.environ["ES_API_KEY"] ) openai_client = OpenAI( api_key=os.environ["OPENAI_API_KEY"], ) index_source_fields = { "medicines": [ "semantic_field" ] } def get_elasticsearch_results(): es_query = { "retriever": { "standard": { "query": { "nested": { "path": "semantic_field.inference.chunks", "query": { "sparse_vector": { "inference_id": "medicines-inference", "field": "semantic_field.inference.chunks.embeddings", "query": query } }, "inner_hits": { "size": 2, "name": "medicines.semantic_field", "_source": [ "semantic_field.inference.chunks.text" ] } } } } }, "size": 3 } result = es_client.search(index="medicines", body=es_query) return result["hits"]["hits"] def create_openai_prompt(results): context = "" for hit in results: inner_hit_path = f"{hit['_index']}.{index_source_fields.get(hit['_index'])[0]}" ## For semantic_text matches, we need to extract the text from the inner_hits if 'inner_hits' in hit and inner_hit_path in hit['inner_hits']: context += '\n --- \n'.join(inner_hit['_source']['text'] for inner_hit in hit['inner_hits'][inner_hit_path]['hits']['hits']) else: source_field = index_source_fields.get(hit["_index"])[0] hit_context = hit["_source"][source_field] context += f"{hit_context}\n" prompt = f""" Instructions: - You are an assistant specializing in answering questions about the sale of medicines. - Answer questions truthfully and factually using only the context presented. - If you don't know the answer, just say that you don't know, don't make up an answer. - You must always cite the document where the answer was extracted using inline academic citation style [], using the position. - Use markdown format for code examples. - You are correct, factual, precise, and reliable. Context: {context} """ return prompt def generate_openai_completion(user_prompt, question): response = openai_client.chat pletions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": user_prompt}, {"role": "user", "content": question}, ] ) return response.choices[0].message.content if __name__ == "__main__": question = "my question" elasticsearch_results = get_elasticsearch_results() context_prompt = create_openai_prompt(elasticsearch_results) openai_completion = generate_openai_completion(context_prompt, question) print(openai_completion)

为了使其与 Ollama 一起工作,你必须更改 OpenAI 客户端以连接到 Ollama 服务器而不是 OpenAI 服务器。你可以在此处找到 OpenAI 示例和兼容端点的完整列表。

openai_client = OpenAI( # you can use http://localhost:11434/v1/ if running this code locally. base_url=' your-ngrok-url.ngrok-free.app/v1/', # required but ignored api_key='ollama', )

并且在调用完成方法时将模型更改为 llama3.2:

def generate_openai_completion(user_prompt, question): response = openai_client.chat pletions.create( model="llama3.2", messages=[ {"role": "system", "content": user_prompt}, {"role": "user", "content": question}, ] ) return response.choices[0].message.content

让我们添加一个问题:an I buy Clonazepam without a prescription? 对于 Elasticsearch 查询:

def get_elasticsearch_results(): es_query = { "retriever": { "standard": { "query": { "nested": { "path": "semantic_field.inference.chunks", "query": { "sparse_vector": { "inference_id": "medicines-inference", "field": "semantic_field.inference.chunks.embeddings", "query": "Can I buy Clonazepam without a prescription?" } }, "inner_hits": { "size": 2, "name": "medicines.semantic_field", "_source": [ "semantic_field.inference.chunks.text" ] } } } } }, "size": 3 } result = es_client.search(index="medicines", body=es_query) return result["hits"]["hits"]

另外,在完成调用时还会打印一些内容,这样我们就可以确认我们正在将 Elasticsearch 结果作为问题上下文的一部分发送:

if __name__ == "__main__": question = "Can I buy Clonazepam without a prescription?" elasticsearch_results = get_elasticsearch_results() context_prompt = create_openai_prompt(elasticsearch_results) print("========== Context Prompt START ==========") print(context_prompt) print("========== Context Prompt END ==========") print("========== Ollama Completion START ==========") openai_completion = generate_openai_completion(context_prompt, question) print(openai_completion) print("========== Ollama Completion END ==========")

现在让我们运行命令:

pip install -qU elasticsearch openai python main.py

你应该看到类似这样的内容:

========== Context Prompt START ========== Instructions: - You are an assistant specializing in answering questions about the sale of medicines. - Answer questions truthfully and factually using only the context presented. - If you don't know the answer, just say that you don't know, don't make up an answer. - You must always cite the document where the answer was extracted using inline academic citation style [], using the position. - Use markdown format for code examples. - You are correct, factual, precise, and reliable. Context: Clonazepam --- An antiepileptic medication that requires a prescription.A nonsteroidal anti-inflammatory drug (NSAID) available WITHOUT a prescription. --- IbuprofenAn anxiolytic medication that strictly requires a prescription. --- Lorazepam ========== Context Prompt END ========== ========== Ollama Completion START ========== No, you cannot buy Clonazepam over-the-counter (OTC) without a prescription [1]. It is classified as a controlled substance in the United States due to its potential for dependence and abuse. Therefore, it can only be obtained from a licensed healthcare provider who will issue a prescription for this medication. ========== Ollama Completion END ==========

结论

在本文中,我们可以看到,当将 Ollama 等工具与 Elasticsearch 推理 API 和 Playground 结合使用时,它们的强大功能和多功能性。

经过几个简单的步骤,我们就得到了一个可以运行的 RAG 应用程序,该应用程序可以使用 LLM 在我们自己的基础设施中免费运行的聊天功能。这还使我们能够更好地控制资源和敏感信息,同时还使我们能够访问用于不同任务的各种模型。

想要获得 Elastic 认证吗?了解下一期 Elasticsearch 工程师培训何时举行!

Elasticsearch 包含许多新功能,可帮助你为你的用例构建最佳的搜索解决方案。深入了解我们的示例笔记本以了解更多信息,开始免费云试用,或立即在本地机器上试用 Elastic。

原文:Using Ollama with the Inference API - Elasticsearch Labs

标签:

Elasticsearch:将Ollama与推理API结合使用由讯客互联创业栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“Elasticsearch:将Ollama与推理API结合使用