【音视频】H265解码Nalu后封装rtp包
- 游戏开发
- 2025-09-13 11:36:01

概述
基于ZLM流媒体框架以及简单RTSP服务器开源项目分析总结,相关源码参考以下链接
H265-rtp提取Nalu逻辑通过rtsp流地址我们可以获取视频流中的多个rtp包,其中每个RTP包中又会包含一个或者多个Nalu,将其提取处理
总体逻辑分析
核心逻辑在于对H265 RTP解复用器的使用,从RTP包中提取出来完整Nalu或者分片的Nalu
接收RTP数据包识别负载数据,然后处理RTP拓展头部信息识别NALU的类型,主要用于区分其是单一的Nalu还是分片的Nalu(FU类型为49)单一Nalu处理逻辑 添加起始码,通过回调函数传递Nalu 分片Nalu的处理 重组Nalu:首先会在缓冲区中存储来自多个rtp包的分片数据,然后逐步重组完整的Nalu通过FU头部标志(S,E)识别起始、中间和结束分片 在起始分片中,从FU头部恢复原始的Nalu类型结束分片的时候,添加起始码和重组的Nalu头部,并通过回调函数传递完整的Nalu数据 最后通过回调函数进一步对H265的Nalu进行处理参考(RTP)
* 0 1 2 3 * 0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |V=2|P|X| CC |M| PT | sequence number | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | timestamp | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | synchronization source (SSRC) identifier | * +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ * | contributing source (CSRC) identifiers | * : .... : * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * */代码实现分析
开始处理H265的RTP包,然后计算RTP包的负载数据的起始地址以及负载数据的长度计算的主要方法就是跳过RTP头部大小 struct RtpHeader *header = (struct RtpHeader *)data; int payload_type = header->payloadType; if(payload_type != payload_){ return; } const uint8_t* payload = data + sizeof(struct RtpHeader); size_t payload_len = size - sizeof(struct RtpHeader); 处理RTP拓展头部,首先需要判断其拓展头部是否存在存在拓展头部的处理 计算拓展头部的长度然后通过偏移量跳过RTP的头部和拓展头部,从而使得负载数据指向争取的位置目的是保证其提取正确的Nalu数据 if (header->extension){ const uint8_t *extension_data = payload; size_t extension_length = 4 * (extension_data[2] << 8 | extension_data[3]); size_t payload_offset = 4 + extension_length; payload = payload + payload_offset; payload_len = payload_len - payload_offset; } 判断Nalu的头部和分片类型 如果是49分片类型,那么需要对分片数据进行特别处理 struct H265NaluHeader *h265_header = (struct H265NaluHeader *)payload; if(h265_header->type == 49){ // 分片 (Fragmentation Unit - FU) struct H265FUHeader *fu_header = (struct H265FUHeader *)&payload[2]; // ... 分片 NALU 的处理逻辑 ... } else{ // 单一封包 (Single NAL Unit) // ... 单一 NALU 的处理逻辑 ... } 首先访问负载数据的头部处理起始分片然后将起始分片后的分片放入缓冲区最后遇到结束分片的时候,将其统一封装成一个Nalu即可 struct H265FUHeader *fu_header = (struct H265FUHeader *)&payload[2]; if(fu_header->s == 1){ // 起始分片 (Start fragment) find_start_ = true; if(pos_buffer_ == 0){ // 首次接收到起始分片 struct H265NaluHeader header = *h265_header; header.type = fu_header->type; // 从 FU 头部恢复原始 NALU 类型 buffer_[0] = 0; buffer_[1] = 0; buffer_[2] = 0; buffer_[3] = 1; // NALU 起始码前缀 memcpy(buffer_ + 4, &header, sizeof(struct H265NaluHeader)); // 复制 NALU 头部 pos_buffer_ += 4 + sizeof(struct H265NaluHeader); } memcpy(buffer_ + pos_buffer_, payload + 3, payload_len - 3); // 复制分片数据 pos_buffer_ += payload_len - 3; } else if(fu_header->e == 1){ // 结束分片 (End fragment) if(find_start_ == false){ // 尚未接收到起始分片 return; } memcpy(buffer_ + pos_buffer_, payload + 3, payload_len - 3); // 复制分片数据 pos_buffer_ += payload_len - 3; if(call_back_){ // 调用回调函数,传递完整的 NALU call_back_->OnVideoData(ntohl(header->timestamp), buffer_, pos_buffer_); } find_start_ = false; // 重置状态,准备接收下一个 NALU pos_buffer_ = 0; } else { // 中间分片 (Middle fragment) if (!find_start_) { // 尚未接收到起始分片 return; } memcpy(buffer_ + pos_buffer_, payload + 3, payload_len - 3); // 复制分片数据 pos_buffer_ += payload_len - 3; } 处理单一封包的Nalu 直接跳过起始码即可提取出RTP包中的Nalu else{ // 单一封包 (Single NAL Unit) buffer_[0] = 0; buffer_[1] = 0; buffer_[2] = 0; buffer_[3] = 1; memcpy(buffer_ + 4, payload, payload_len); if(call_back_){ call_back_->OnVideoData(ntohl(header->timestamp), buffer_, payload_len + 4); } } H265-Nalu组成RTP包 逻辑分析核心流程
确定 RTP 负载类型 (Payload Type, PT) 参考SDP协商出来的信息 构建 RTP 头部 (RTP Header) 版本 (Version, V): RTP 版本号,通常为 2填充 (Padding, P): 指示 RTP 包末尾是否有填充字节。通常为 0扩展 (Extension, X): 指示 RTP 头部后面是否有扩展头部。通常为 0,除非你需要添加扩展信息CSRC 计数器 (CSRC Count, CC): CSRC 标识符的数目。通常为 0,除非有贡献源标记位 (Marker, M): 标记 RTP 包的事件,例如,可以用来标记帧的结束。对于视频,可以用来标记每个帧的最后一个 RTP 包负载类型 (Payload Type, PT): 你选择的负载类型,例如 96序列号 (Sequence Number): 每个 RTP 包的序列号,从一个随机值开始,然后每个包递增 1。用于检测包丢失和重排序时间戳 (Timestamp): 指示 RTP 包中第一个字节的采样时间。对于视频,时间戳应该反映视频帧的显示时间。时间戳时钟频率需要根据视频编码的帧率来确定同步源标识符 (Synchronization Source Identifier, SSRC): 标识 RTP 流的源,为一个 32 位的随机数,在 RTP 会话中应保持唯一 Nalu分片与封装 总结:如果一个Nalu的大小超过MTU(最大传输单元),那么就需要对其分片处理,打成多个RTP包首先判断是否需要分片FU-A分片 起始分片 RTP头部,同上FU Indicator (1 字节): NALU 头部的前两个字节,但 NALU type 字段设置为 49 (FU 类型)FU Header (1 字节) S (Start bit): 设置为 1,表示是分片的开始E (End bit): 设置为 0R (Reserved bit): 必须为 0FU type: 原始 NALU 类型的后 6 位 (从原始 NALU 头部中提取) 分片数据:NALU的一部分数据 中间分片 RTP头部信息FU Indicator (1 字节):同起始分片FU Header (1 字节) S (Start bit): 设置为0E (End bit): 设置为 0R (Reserved bit): 必须为 0FU type: 这里需要与起始分片相同 分片数据:Nalu的一部分数据 结束分片 RTP头部:序列号和时间戳递增,标记位 M 可以设置为 1,如果这是当前帧的最后一个 RTP 包FU Indicator (1 字节):同起始分片FU Header (1 字节) S (Start bit): 设置为0E (End bit): 设置为 1,表示分片的结束R (Reserved bit): 必须为 0FU type: 这里需要与起始分片相同 分片数据:Nalu最后一部分的数据 单一分片封装 RTP头部,标记位M可以设置为1吗,当前帧是最后一个Nalu的时候Nalu数据(这里是去除Nalu的起始码,直接放入Nalu头部+负载数据) 时间戳和序列号管理 时间戳: 对于每个视频帧的第一个 RTP 包,设置时间戳为当前帧的显示时间。对于同一帧的后续分片包,时间戳保持不变。 下一个视频帧的第一个 RTP 包使用新的时间戳,时间戳的增量应该与视频帧率和时钟频率一致 序列号: 为每个 RTP 包分配递增的序列号,起始序列号随机选择 代码实现 #include <iostream> #include <vector> #include <cstdint> #include <cstring> #include <iomanip> // 用于十六进制输出格式化 #include <ctime> // 用于日志中的时间戳 #include <sstream> // 用于字符串流 // --- 常量定义 --- const uint8_t H265_PAYLOAD_TYPE = 96; const uint16_t RTP_VERSION = 2; const uint16_t VIDEO_STREAM_ID = 0xE0; // 视频流的 Stream ID 示例 const size_t MAX_RTP_PAYLOAD_SIZE = 1400; // RTP 负载最大尺寸示例,根据 MTU 和头部开销调整 const size_t MAX_PES_PAYLOAD_SIZE = 2048; // PES 负载最大尺寸示例,根据需要调整 const uint32_t PS_START_CODE_PREFIX = 0x000001BA; const uint32_t PES_START_CODE_PREFIX = 0x000001; // --- 结构体定义 --- #pragma pack(push, 1) // 确保结构体内部没有填充字节 // 简化的 RTP 头部 struct RTPHeader { uint8_t version_padding_extension_csrc_count; // V, P, X, CC uint8_t marker_payload_type; // M, PT uint16_t sequence_number; uint32_t timestamp; uint32_t ssrc; RTPHeader() : version_padding_extension_csrc_count(0x80), marker_payload_type(H265_PAYLOAD_TYPE), sequence_number(0), timestamp(0), ssrc(0x12345678) {} // SSRC 示例 }; // FU 头部 (Fragmentation Unit A, FU-A) struct FUHeader { uint8_t fu_header; // S, E, R, FU Type FUHeader() : fu_header(0) {} }; // FU 指示器 (Fragmentation Unit A, FU-A) struct FUIndicator { uint8_t fu_indicator; // Type = 49 (FU), NALU type bits FUIndicator() : fu_indicator(0) {} }; // 简化的 PES 头部 (关注 PTS) struct PESHeader { uint32_t packet_start_code_prefix; uint8_t stream_id; uint16_t pes_packet_length; // 暂时设置为 0,之后计算 uint8_t pes_scrambling_control_indicator_etc; // 标志位和指示器 uint8_t pes_header_data_length; uint64_t pts_dts_flags_pts; // PTS 标志和 PTS 值 (简化示例) PESHeader() : packet_start_code_prefix(PES_START_CODE_PREFIX), stream_id(VIDEO_STREAM_ID), pes_packet_length(0), pes_scrambling_control_indicator_etc(0x80), // PTS_DTS_flags: 0b10 (仅 PTS) pes_header_data_length(5), // 仅 PTS 占用 5 字节 pts_dts_flags_pts(0) {} // PTS 值稍后设置 }; // 极简 PS 头部 (仅用于示例) struct PSHeader { uint32_t packet_start_code_prefix; uint64_t system_clock_reference; // SCR (System Clock Reference) - 简化 PSHeader() : packet_start_code_prefix(PS_START_CODE_PREFIX), system_clock_reference(0) {} }; #pragma pack(pop) // 恢复默认 packing // --- 全局计数器和变量 --- static uint16_t rtp_sequence_number_counter = 0; static uint32_t rtp_timestamp_counter = 0; static uint64_t pes_pts_counter = 0; // PES PTS 计数器示例 // --- 日志记录函数 --- void Log(const std::string& message) { std::time_t now = std::time(nullptr); std::tm local_time; localtime_r(&now, &local_time); char timestamp_str[20]; std::strftime(timestamp_str, sizeof(timestamp_str), "%Y-%m-%d %H:%M:%S", &local_time); std::cout << "[" << timestamp_str << "] " << message << std::endl; } // --- 辅助函数:将数据转换为十六进制字符串 --- std::string ToHex(const uint8_t* data, size_t size) { std::stringstream hex_stream; hex_stream << std::hex << std::setfill('0'); for (size_t i = 0; i < size; ++i) { hex_stream << std::setw(2) << static_cast<int>(data[i]) << " "; } return hex_stream.str(); } // --- 阶段 1: NALU 封装为 RTP 包 --- std::vector<std::vector<uint8_t>> EncapsulateNALUtoRTP(const std::vector<uint8_t>& nalu_data, int nalu_type) { Log("--- 开始 NALU 到 RTP 的封装 ---"); std::vector<std::vector<uint8_t>> rtp_packets; size_t nalu_size = nalu_data.size(); const uint8_t* nalu_payload = nalu_data.data(); size_t nalu_payload_offset = 0; if (nalu_size <= MAX_RTP_PAYLOAD_SIZE) { // 情况 1: NALU 足够小,可以放入单个 RTP 包 Log("NALU 尺寸足够小,可以使用单个 RTP 包。"); std::vector<uint8_t> rtp_packet_buffer(sizeof(RTPHeader) + nalu_size); RTPHeader rtp_header; rtp_header.sequence_number = htons(rtp_sequence_number_counter++); rtp_header.timestamp = htonl(rtp_timestamp_counter); rtp_header.marker_payload_type |= (1 << 7); // 设置 Marker 位 (示例,可能根据实际需求调整) memcpy(rtp_packet_buffer.data(), &rtp_header, sizeof(RTPHeader)); memcpy(rtp_packet_buffer.data() + sizeof(RTPHeader), nalu_payload, nalu_size); Log("创建 RTP 头部: " + ToHex(rtp_packet_buffer.data(), sizeof(RTPHeader))); Log("RTP 负载 (NALU 数据): " + ToHex(rtp_packet_buffer.data() + sizeof(RTPHeader), nalu_size)); rtp_packets.push_back(rtp_packet_buffer); } else { // 情况 2: NALU 太大,需要分片 (FU-A) Log("NALU 尺寸超过 RTP 负载限制,需要分片 (FU-A)。"); int fragment_number = 0; bool first_fragment = true; bool last_fragment = false; while (nalu_payload_offset < nalu_size) { size_t fragment_size = std::min(MAX_RTP_PAYLOAD_SIZE - sizeof(FUIndicator) - sizeof(FUHeader), nalu_size - nalu_payload_offset); if (nalu_payload_offset + fragment_size == nalu_size) { last_fragment = true; } std::vector<uint8_t> rtp_packet_buffer(sizeof(RTPHeader) + sizeof(FUIndicator) + sizeof(FUHeader) + fragment_size); RTPHeader rtp_header; rtp_header.sequence_number = htons(rtp_sequence_number_counter++); rtp_header.timestamp = htonl(rtp_timestamp_counter); rtp_header.marker_payload_type &= ~(1 << 7); // 清除 Marker 位 (分片包通常不设置,除非是帧的最后一个分片) if (last_fragment) rtp_header.marker_payload_type |= (1 << 7); // 在最后一个分片包上设置 Marker 位 (示例) FUIndicator fu_indicator; fu_indicator.fu_indicator = 49 << 1; // FU 类型 = 49 fu_indicator.fu_indicator |= ((nalu_type >> 5) & 0x01); // 复制原始 NALU 头部的 forbidden_zero_bit FUHeader fu_header; fu_header.fu_header = (nalu_type & 0x1F); // NAL 单元类型 (原始 NALU 类型的后 5 位) if (first_fragment) fu_header.fu_header |= (1 << 7); // 设置 S 位 (起始分片) if (last_fragment) fu_header.fu_header |= (1 << 6); // 设置 E 位 (结束分片) memcpy(rtp_packet_buffer.data(), &rtp_header, sizeof(RTPHeader)); memcpy(rtp_packet_buffer.data() + sizeof(RTPHeader), &fu_indicator, sizeof(FUIndicator)); memcpy(rtp_packet_buffer.data() + sizeof(RTPHeader) + sizeof(FUIndicator), &fu_header, sizeof(FUHeader)); memcpy(rtp_packet_buffer.data() + sizeof(RTPHeader) + sizeof(FUIndicator) + sizeof(FUHeader), nalu_payload + nalu_payload_offset, fragment_size); Log("创建 RTP 头部 (分片 " + std::to_string(fragment_number) + "): " + ToHex(rtp_packet_buffer.data(), sizeof(RTPHeader))); Log("FU 指示器: " + ToHex(rtp_packet_buffer.data() + sizeof(RTPHeader), sizeof(FUIndicator))); Log("FU 头部: " + ToHex(rtp_packet_buffer.data() + sizeof(RTPHeader) + sizeof(FUIndicator), sizeof(FUHeader))); Log("RTP 负载 (分片数据 " + std::to_string(fragment_number) + "): " + ToHex(rtp_packet_buffer.data() + sizeof(RTPHeader) + sizeof(FUIndicator) + sizeof(FUHeader), fragment_size)); rtp_packets.push_back(rtp_packet_buffer); nalu_payload_offset += fragment_size; first_fragment = false; fragment_number++; } } rtp_timestamp_counter += 3600; // 时间戳递增示例 (90kHz 时钟, 约 40ms 帧时长) Log("--- NALU 到 RTP 封装完成,生成 " + std::to_string(rtp_packets.size()) + " 个 RTP 包。---\n"); return rtp_packets; } // --- 阶段 2: RTP 封装为 PES (更标准的做法应为 NALU 封装为 PES) --- std::vector<uint8_t> EncapsulateRTPtoPES(const std::vector<std::vector<uint8_t>>& rtp_packets, const std::vector<uint8_t>& original_nalu_data) { Log("--- 开始 RTP (或 NALU) 到 PES 的封装 ---"); std::vector<uint8_t> pes_packet_buffer; // 为了更符合 PS 流标准,理想情况下应该从 RTP 包中解封装出 NALU 数据,然后将 NALU 放入 PES。 // 但为了演示 "组成 rtp 包后通过 PS 流发送出去" 的字面意思,这里我们将 *整个 RTP 包* 放入 PES 负载 (这不太标准,但在某些特定场景下可能可行)。 // 在实际系统中,你可能更希望提取 RTP 中的 NALU 负载,然后放入 PES。 PESHeader pes_header; pes_header.pts_dts_flags_pts = (static_cast<uint64_t>(pes_pts_counter++) << 3) | 0x02; // 仅设置 PTS 标志 uint64_t pts_33_to_1 = (pes_pts_counter * 300) % 0x200000000LL; // 假设 300 ticks/ms, 90kHz clock uint32_t pts_32_to_2 = pts_33_to_1 & 0xFFFFFFFE0LL; uint8_t pts_byte0 = 0x20 | ((pts_32_to_2 >> 30) & 0x07) << 1 | 0x01; uint16_t pts_byte1_2 = (pts_32_to_2 >> 15) & 0xFFFF; uint16_t pts_byte3_4 = pts_32_to_2 & 0xFFFF; pes_header.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte0) << 40); pes_header.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte1_2) << 24); pes_header.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte3_4) >> 8); size_t pes_payload_size = 0; for (const auto& rtp_packet : rtp_packets) { pes_payload_size += rtp_packet.size(); } pes_header.pes_packet_length = htons(sizeof(PESHeader) + pes_payload_size - 6); // PES 包长度不包括 包起始码前缀 和 长度字段自身 pes_packet_buffer.resize(sizeof(PESHeader)); memcpy(pes_packet_buffer.data(), &pes_header, sizeof(PESHeader)); Log("创建 PES 头部: " + ToHex(pes_packet_buffer.data(), sizeof(PESHeader))); Log("PES PTS Value: " + std::to_string(pes_pts_counter)); for (const auto& rtp_packet : rtp_packets) { pes_packet_buffer.insert(pes_packet_buffer.end(), rtp_packet.begin(), rtp_packet.end()); } Log("PES Payload (RTP 包数据): Total size " + std::to_string(pes_payload_size) + " bytes."); Log("--- RTP to PES Encapsulation Complete. PES Packet Size: " + std::to_string(pes_packet_buffer.size()) + " bytes. ---\n"); return pes_packet_buffer; } // --- 阶段 3: 将 PES 包放入 PS 流 (简化示例,仅包含 PS 头部和 PES 包) --- std::vector<uint8_t> CreatePSStream(const std::vector<uint8_t>& pes_packet) { Log("--- 开始创建 PS 流 ---"); std::vector<uint8_t> ps_stream_buffer; PSHeader ps_header; // SCR (System Clock Reference) 示例 - 非常简化 ps_header.system_clock_reference = (static_cast<uint64_t>(pes_pts_counter * 300) << 3) | 0x01; // 90kHz clock, marker_bits = '01' ps_stream_buffer.resize(sizeof(PSHeader)); memcpy(ps_stream_buffer.data(), &ps_header, sizeof(PSHeader)); Log("创建 PS 头部: " + ToHex(ps_stream_buffer.data(), sizeof(PSHeader))); ps_stream_buffer.insert(ps_stream_buffer.end(), pes_packet.begin(), pes_packet.end()); Log("将 PES 包添加到 PS 流. PES Packet Size: " + std::to_string(pes_packet.size()) + " bytes."); Log("--- PS 流创建完成. Total PS Stream Size: " + std::to_string(ps_stream_buffer.size()) + " bytes. ---\n"); return ps_stream_buffer; } int main() { Log("--- 示例程序开始 ---"); // 示例 H.265 NALU 数据 (这里用一些虚拟数据代替实际的 H.265 NALU) std::vector<uint8_t> h265_nalu_data = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, // ... 假设这里是真实的 H.265 NALU 负载数据 ... }; int nalu_type = 32; // 示例 NALU 类型 (VPS) Log("原始 H.265 NALU 数据: Size = " + std::to_string(h265_nalu_data.size()) + " bytes, Type = " + std::to_string(nalu_type)); Log(ToHex(h265_nalu_data.data(), h265_nalu_data.size())); // 阶段 1: NALU 封装成 RTP 包 std::vector<std::vector<uint8_t>> rtp_packets = EncapsulateNALUtoRTP(h265_nalu_data, nalu_type); // 阶段 2: RTP 包封装成 PES 包 std::vector<uint8_t> pes_packet = EncapsulateRTPtoPES(rtp_packets, h265_nalu_data); // 阶段 3: 创建 PS 流 std::vector<uint8_t> ps_stream = CreatePSStream(pes_packet); Log("\n--- 最终 PES 包 (放入 PS 流之前) ---"); Log("PES Packet Hex Data (First 64 bytes): \n" + ToHex(pes_packet.data(), std::min((size_t)64, pes_packet.size()))); Log("PES Packet Size: " + std::to_string(pes_packet.size()) + " bytes."); Log("\n--- 最终 PS 流 (First 64 bytes) ---"); Log("PS Stream Hex Data (First 64 bytes): \n" + ToHex(ps_stream.data(), std::min((size_t)64, ps_stream.size()))); Log("PS Stream Size: " + std::to_string(ps_stream.size()) + " bytes."); Log("--- 示例程序结束 ---"); return 0; } Nalu封装PS流 逻辑分析PS 流是 MPEG-2 标准中用于存储程序内容的一种格式。它主要用于存储和传输已经复用的音视频基本流。要将 RTP 包放入 PS 流中,通常的做法是先将 RTP 包转换为 PES包,然后再将 PES 包复用进 PS 流,其中GB28181平台就是需要将视频封装成PS流进行传输
注意事项
之前自己在书写项目的时候,该处的逻辑有些混淆,认为应该先将Nalu封装成RTP包然后通过PS流发送出去。这里就涉及了严重的概念混淆的错误。真正的流程应该如下,后续补充对PS流基础概念和原理的认识
将RTP作为一个传输协议,最终PS流中应该包含的是音视频的PES包,所以还需要对其进行包装一层
主要流程分析
封装成PES等包,在开源社区有已经封装好的代码,该处只简单分析其逻辑
从RTP包中解析出来NaluNALU 封装成 PES 包 (Packetized Elementary Stream) PES 头部 (PES Header) 包起始码前缀:0x00 0x00 0x01流ID:主要用于标识流的类PES包长度:指示 PES 包的长度,不包括包起始码前缀和自身长度字段。如果长度未知可以设置为 0,但通常应计算实际长度PES头部标志位:指示其是否包含有PTS/DTS信息PTS/DTS PTS (显示时间戳): 指示 PES 包中数据的显示时间。应该从 RTP 包的时间戳转换过来DTS (解码时间戳): 指示 PES 包中数据的解码时间。对于 I 帧,DTS 通常等于 PTS。对于 B 帧,DTS 可能早于 PTS。对于 H.265,如果只包含 P 和 I 帧,DTS 通常可以等于 PTS PES负载 PES 负载 (PES Payload): 将一个或多个完整的 NALU 放入 PES 负载中。 你可以选择每个 PES 包放一个 NALU,或者将多个小的 NALU 组合到一个 PES 包中 构建PS流 PS 头部 (Program Stream Header): 每个 PS 包的开始 包起始码前缀 (Packet Start Code Prefix):0x00 0x00 0x01系统时钟参考 (System Clock Reference, SCR): 用于同步解码器时钟复用率 (Mux Rate): 指示 PS 流的比特率 系统头部 (System Header): 描述整个 PS 流的系统级别信息,通常在 PS 流的开始处出现一次 系统头部起始码 (System Header Start Code): 0x00 0x00 0x01 0xBB速率边界 (Rate Bound): 流的最大比特率音频边界 (Audio Bound): 音频流的数量视频边界 (Video Bound): 视频流的数量固定标志位 (Fixed Flag): 指示是否为固定比特率CSPS_flag, System_audio_lock_flag, System_video_lock_flag: 同步标志视频和音频流的 PID (Program ID): 标识视频和音频流 程序流映射 (Program Stream Map, PSM): 描述程序的内容,包括音频和视频流的类型和 PIDPES 包: 将封装好的 PES 包按时间顺序复用进 PS 流中。可以交错放置视频和音频 PES 包 时间戳处理(PTS/DTS) 将 RTP 包的时间戳信息转换为 PES 包的 PTS/DTS要确保 PTS/DTS 值正确反映视频帧的显示和解码时间时间戳单位需要与 PS 流的标准时钟频率 (通常是 90kHz) 匹配 代码实现下述代码只作为参考,详细封装参考下一个章节笔记
#include <iostream> #include <vector> #include <cstdint> #include <cstring> #include <iomanip> // 用于十六进制输出格式化 #include <ctime> // 用于日志中的时间戳 #include <sstream> // 用于字符串流 // --- 常量定义 --- const uint16_t VIDEO_STREAM_ID = 0xE0; // 视频流的 Stream ID 示例 const size_t MAX_PES_PAYLOAD_SIZE = 2048; // PES 负载最大尺寸示例,根据需要调整 const uint32_t PS_START_CODE_PREFIX = 0x000001BA; const uint32_t PES_START_CODE_PREFIX = 0x000001; const uint8_t NAL_START_CODE_4_BYTE[] = {0x00, 0x00, 0x00, 0x01}; // --- 结构体定义 --- #pragma pack(push, 1) // 确保结构体内部没有填充字节 // 简化的 PES 头部 (关注 PTS) struct PESHeader { uint32_t packet_start_code_prefix; uint8_t stream_id; uint16_t pes_packet_length; // 暂时设置为 0,之后计算 uint8_t pes_scrambling_control_indicator_etc; // 标志位和指示器 uint8_t pes_header_data_length; uint64_t pts_dts_flags_pts; // PTS 标志和 PTS 值 (简化示例) PESHeader() : packet_start_code_prefix(PES_START_CODE_PREFIX), stream_id(VIDEO_STREAM_ID), pes_packet_length(0), pes_scrambling_control_indicator_etc(0x80), // PTS_DTS_flags: 0b10 (仅 PTS) pes_header_data_length(5), // 仅 PTS 占用 5 字节 pts_dts_flags_pts(0) {} // PTS 值稍后设置 }; // 极简 PS 头部 (仅用于示例) struct PSHeader { uint32_t packet_start_code_prefix; uint64_t system_clock_reference; // SCR (System Clock Reference) - 简化 PSHeader() : packet_start_code_prefix(PS_START_CODE_PREFIX), system_clock_reference(0) {} }; #pragma pack(pop) // 恢复默认 packing // --- 全局计数器和变量 --- static uint64_t pes_pts_counter = 0; // PES PTS 计数器示例 // --- 日志记录函数 --- void Log(const std::string& message) { std::time_t now = std::time(nullptr); std::tm local_time; localtime_r(&now, &local_time); char timestamp_str[20]; std::strftime(timestamp_str, sizeof(timestamp_str), "%Y-%m-%d %H:%M:%S", &local_time); std::cout << "[" << timestamp_str << "] " << message << std::endl; } // --- 辅助函数:将数据转换为十六进制字符串 --- std::string ToHex(const uint8_t* data, size_t size) { std::stringstream hex_stream; hex_stream << std::hex << std::setfill('0'); for (size_t i = 0; i < size; ++i) { hex_stream << std::setw(2) << static_cast<int>(data[i]) << " "; } return hex_stream.str(); } // --- 阶段 1: NALU 封装为 PES 包 --- std::vector<uint8_t> EncapsulateNALUtoPES(const std::vector<uint8_t>& nalu_data) { Log("--- 开始 NALU 到 PES 的封装 ---"); std::vector<uint8_t> pes_packet_buffer; PESHeader pes_header; pes_header.pts_dts_flags_pts = (static_cast<uint64_t>(pes_pts_counter++) << 3) | 0x02; // 仅设置 PTS 标志 uint64_t pts_33_to_1 = (pes_pts_counter * 300) % 0x200000000LL; // 假设 300 ticks/ms, 90kHz clock uint32_t pts_32_to_2 = pts_33_to_1 & 0xFFFFFFFE0LL; uint8_t pts_byte0 = 0x20 | ((pts_32_to_2 >> 30) & 0x07) << 1 | 0x01; uint16_t pts_byte1_2 = (pts_32_to_2 >> 15) & 0xFFFF; uint16_t pts_byte3_4 = pts_32_to_2 & 0xFFFF; pes_header.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte0) << 40); pes_header.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte1_2) << 24); pes_header.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte3_4) >> 8); pes_header.pes_packet_length = htons(sizeof(PESHeader) + nalu_data.size() - 6); // PES 包长度不包括 包起始码前缀 和 长度字段自身 pes_packet_buffer.resize(sizeof(PESHeader)); memcpy(pes_packet_buffer.data(), &pes_header, sizeof(PESHeader)); Log("创建 PES 头部: " + ToHex(pes_packet_buffer.data(), sizeof(PESHeader))); Log("PES PTS Value: " + std::to_string(pes_pts_counter)); // 将 NALU 数据直接添加到 PES 负载 pes_packet_buffer.insert(pes_packet_buffer.end(), nalu_data.begin(), nalu_data.end()); Log("PES Payload (NALU 数据): Size " + std::to_string(nalu_data.size()) + " bytes."); Log("--- NALU 到 PES 封装完成. PES Packet Size: " + std::to_string(pes_packet_buffer.size()) + " bytes. ---\n"); return pes_packet_buffer; } // --- 阶段 2: 将 PES 包放入 PS 流 (简化示例,仅包含 PS 头部和 PES 包) --- std::vector<uint8_t> CreatePSStream(const std::vector<uint8_t>& pes_packet) { Log("--- 开始创建 PS 流 ---"); std::vector<uint8_t> ps_stream_buffer; PSHeader ps_header; // SCR (System Clock Reference) 示例 - 非常简化 ps_header.system_clock_reference = (static_cast<uint64_t>(pes_pts_counter * 300) << 3) | 0x01; // 90kHz clock, marker_bits = '01' ps_stream_buffer.resize(sizeof(PSHeader)); memcpy(ps_stream_buffer.data(), &ps_header, sizeof(PSHeader)); Log("创建 PS 头部: " + ToHex(ps_stream_buffer.data(), sizeof(PSHeader))); ps_stream_buffer.insert(ps_stream_buffer.end(), pes_packet.begin(), pes_packet.end()); Log("将 PES 包添加到 PS 流. PES Packet Size: " + std::to_string(pes_packet.size()) + " bytes."); Log("--- PS 流创建完成. Total PS Stream Size: " + std::to_string(ps_stream_buffer.size()) + " bytes. ---\n"); return ps_stream_buffer; } int main() { Log("--- 示例程序开始 ---"); // 示例 H.265 NALU 数据 (这里用一些虚拟数据代替实际的 H.265 NALU) std::vector<uint8_t> h265_nalu_data = { 0x00, 0x00, 0x00, 0x01, // NALU Start Code (4-byte) - 虽然 PS 流中通常不直接包含,这里为了更贴近NALU理解先加上,实际情况可能不需要 0x40, // NALU Header (example type) 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, // ... 假设这里是真实的 H.265 NALU 负载数据 ... }; int nalu_type = 32; // 示例 NALU 类型 (VPS) Log("原始 H.265 NALU 数据: Size = " + std::to_string(h265_nalu_data.size()) + " bytes, Type = " + std::to_string(nalu_type)); Log(ToHex(h265_nalu_data.data(), h265_nalu_data.size())); // 阶段 1: NALU 封装成 PES 包 std::vector<uint8_t> pes_packet = EncapsulateNALUtoPES(h265_nalu_data); // 阶段 2: 创建 PS 流 std::vector<uint8_t> ps_stream = CreatePSStream(pes_packet); Log("\n--- 最终 PES 包 (放入 PS 流之前) ---"); Log("PES Packet Hex Data (First 64 bytes): \n" + ToHex(pes_packet.data(), std::min((size_t)64, pes_packet.size()))); Log("PES Packet Size: " + std::to_string(pes_packet.size()) + " bytes."); Log("\n--- 最终 PS 流 (First 64 bytes) ---"); Log("PS Stream Hex Data (First 64 bytes): \n" + ToHex(ps_stream.data(), std::min((size_t)64, ps_stream.size()))); Log("PS Stream Size: " + std::to_string(ps_stream.size()) + " bytes."); Log("--- 示例程序结束 ---"); return 0; } GB28181平台下H265传输逻辑总结代码实现
root@hcss-ecs-b4a9:/home/test/rtp/nalu# ./test7 [2025-02-23 21:37:20] --- 示例程序开始 --- [2025-02-23 21:37:20] [process_request] 开始模拟推流, NALU 数量: 5 [2025-02-23 21:37:20] 处理 NALU, Type: 32, Keyframe: Yes, Size: 50 bytes. [2025-02-23 21:37:20] RTP 分包数: 1 [2025-02-23 21:37:20] 发送网络包, 大小: 165 bytes. [2025-02-23 21:37:20] Packet Data (First 64 bytes): 80 e0 00 00 00 00 00 00 12 34 56 78 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 ba 01 [2025-02-23 21:37:20] 处理 NALU, Type: 33, Keyframe: Yes, Size: 100 bytes. [2025-02-23 21:37:20] RTP 分包数: 1 [2025-02-23 21:37:20] 发送网络包, 大小: 265 bytes. [2025-02-23 21:37:20] Packet Data (First 64 bytes): 80 e0 00 01 00 00 0e a6 12 34 56 78 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f 60 61 62 63 64 65 66 [2025-02-23 21:37:20] 处理 NALU, Type: 34, Keyframe: Yes, Size: 30 bytes. [2025-02-23 21:37:20] RTP 分包数: 1 [2025-02-23 21:37:20] 发送网络包, 大小: 125 bytes. [2025-02-23 21:37:20] Packet Data (First 64 bytes): 80 e0 00 02 00 00 1d 4c 12 34 56 78 97 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af b0 b1 b2 b3 b4 ba 01 00 00 4c 1d 00 00 00 00 00 00 00 00 bb 01 00 00 00 02 00 00 [2025-02-23 21:37:20] 处理 NALU, Type: 19, Keyframe: Yes, Size: 2048 bytes. [2025-02-23 21:37:20] RTP 分包数: 2 [2025-02-23 21:37:20] 发送网络包, 大小: 1412 bytes. [2025-02-23 21:37:20] Packet Data (First 64 bytes): 80 60 00 03 00 00 2b f2 12 34 56 78 ba 01 00 00 f2 2b 00 00 00 00 00 00 00 00 bb 01 00 00 00 02 00 00 bc 01 00 00 00 06 00 00 00 00 00 00 01 00 00 00 e0 08 0d 80 05 1e 00 00 00 00 21 00 00 00 [2025-02-23 21:37:20] 发送网络包, 大小: 713 bytes. [2025-02-23 21:37:20] Packet Data (First 64 bytes): 80 e0 00 04 00 00 2b f2 12 34 56 78 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f [2025-02-23 21:37:21] 处理 NALU, Type: 1, Keyframe: No, Size: 1500 bytes. [2025-02-23 21:37:21] RTP 分包数: 2 [2025-02-23 21:37:21] 发送网络包, 大小: 1412 bytes. [2025-02-23 21:37:21] Packet Data (First 64 bytes): 80 60 00 05 00 00 3a 98 12 34 56 78 ba 01 00 00 98 3a 00 00 00 00 00 00 00 00 01 00 00 00 e0 05 e9 80 05 27 00 00 00 00 21 00 00 00 00 98 99 9a 9b 9c 9d 9e 9f a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa [2025-02-23 21:37:21] 发送网络包, 大小: 145 bytes. [2025-02-23 21:37:21] Packet Data (First 64 bytes): 80 e0 00 06 00 00 3a 98 12 34 56 78 ef f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 [2025-02-23 21:37:21] --- 示例程序结束 --- #include <iostream> #include <vector> #include <cstdint> #include <cstring> #include <iomanip> // 用于十六进制输出格式化 #include <ctime> // 用于日志中的时间戳 #include <sstream> // 用于字符串流 #include <netinet/in.h> // 包含 htons 的声明 #include <chrono> #include <thread> #include <numeric> // std::iota #include <malloc.h> // --- 常量定义 --- const uint16_t VIDEO_STREAM_ID = 0xE0; // 视频流的 Stream ID 示例 const size_t MAX_RTP_PAYLOAD_SIZE = 1400; // RTP 负载最大尺寸示例 const uint32_t PS_START_CODE_PREFIX = 0x000001BA; const uint32_t PES_START_CODE_PREFIX = 0x000001; const uint8_t NAL_START_CODE_4_BYTE[] = {0x00, 0x00, 0x00, 0x01}; const int PS_HDR_LEN = 14; // 示例 PS Header Length const int SYS_HDR_LEN = 8; // 示例 System Header Length const int PSM_HDR_LEN = 12; // 示例 PSM Header Length const int PES_HDR_LEN = 19; // 示例 PES Header Length const int RTP_HDR_LEN = 12; // 示例 RTP Header Length // --- 结构体定义 --- #pragma pack(push, 1) // 确保结构体内部没有填充字节 // 简化的 PS 头部 (示例) struct PSHeader { uint32_t packet_start_code_prefix; uint64_t system_clock_reference; // SCR PSHeader() : packet_start_code_prefix(PS_START_CODE_PREFIX), system_clock_reference(0) {} }; // 简化的系统头部 (示例) struct SystemHeader { uint32_t system_header_start_code; uint16_t header_length; uint8_t rate_bound[3]; uint8_t audio_bound; uint8_t fixed_flag_etc; SystemHeader() : system_header_start_code(0x000001BB), header_length(0), audio_bound(0), fixed_flag_etc(0) { rate_bound[0] = rate_bound[1] = rate_bound[2] = 0; } }; // 简化的 PSM 头部 (示例) struct PSMHeader { uint32_t program_stream_map_start_code; uint16_t psm_length; uint8_t program_number[2]; uint8_t version_current_next_indicator; uint8_t section_number; uint8_t last_section_number; uint8_t program_info_length[2]; // ... (省略 Program Stream Info 和 ES Info 循环) ... PSMHeader() : program_stream_map_start_code(0x000001BC), psm_length(0), version_current_next_indicator(0), section_number(0), last_section_number(0) { program_number[0] = program_number[1] = 0; program_info_length[0] = program_info_length[1] = 0; } }; // 简化的 PES 头部 (关注 PTS) struct PESHeader { uint32_t packet_start_code_prefix; uint8_t stream_id; uint16_t pes_packet_length; uint8_t pes_scrambling_control_indicator_etc; uint8_t pes_header_data_length; uint64_t pts_dts_flags_pts; PESHeader() : packet_start_code_prefix(PES_START_CODE_PREFIX), stream_id(VIDEO_STREAM_ID), pes_packet_length(0), pes_scrambling_control_indicator_etc(0x80), // PTS_DTS_flags: 0b10 (仅 PTS) pes_header_data_length(5), pts_dts_flags_pts(0) {} }; // 简化的 RTP 头部 struct RTPHeader { uint8_t version_padding_extension_csrc_count; // V, P, X, CC uint8_t marker_payload_type; // M, PT uint16_t sequence_number; uint32_t timestamp; uint32_t ssrc; RTPHeader() : version_padding_extension_csrc_count(0x80), marker_payload_type(96), sequence_number(0), timestamp(0), ssrc(0x12345678) {} // SSRC 示例 }; // Nalu 结构体 struct Nalu { int type; int length; std::vector<uint8_t> packet; Nalu() : type(0), length(0) {} ~Nalu() {} }; using NaluType = int; #pragma pack(pop) // 恢复默认 packing // --- 全局计数器和变量 --- static uint64_t pes_pts_counter = 0; // PES PTS 计数器示例 static uint16_t rtp_seq_counter = 0; // --- 日志记录函数 --- void Log(const std::string& message) { std::time_t now = std::time(nullptr); std::tm local_time; localtime_r(&now, &local_time); char timestamp_str[20]; std::strftime(timestamp_str, sizeof(timestamp_str), "%Y-%m-%d %H:%M:%S", &local_time); std::cout << "[" << timestamp_str << "] " << message << std::endl; } // --- 辅助函数:将数据转换为十六进制字符串 --- std::string ToHex(const uint8_t* data, size_t size) { std::stringstream hex_stream; hex_stream << std::hex << std::setfill('0'); for (size_t i = 0; i < size; ++i) { hex_stream << std::setw(2) << static_cast<int>(data[i]) << " "; } return hex_stream.str(); } // --- 将 VPS, SPS, PPS 处理为一个流 --- std::vector<uint8_t> vps_data; std::vector<uint8_t> sps_data; std::vector<uint8_t> pps_data; void out_nalu(char *buffer, int size, NaluType naluType) { if (naluType == 32) { // VPS vps_data.resize(size); memcpy(vps_data.data(), buffer, size); } else if (naluType == 33) { // SPS sps_data.resize(size); memcpy(sps_data.data(), buffer, size); } else if (naluType == 34) { // PPS pps_data.resize(size); memcpy(pps_data.data(), buffer, size); } else { Nalu *nalu = new Nalu; bool is_i_frame = (naluType == 19); // IDR frame char *packet = (char *)malloc(is_i_frame ? (size + vps_data.size() + sps_data.size() + pps_data.size()) : size); if (is_i_frame) { memcpy(packet, vps_data.data(), vps_data.size()); memcpy(packet + vps_data.size(), sps_data.data(), sps_data.size()); memcpy(packet + vps_data.size() + sps_data.size(), pps_data.data(), pps_data.size()); memcpy(packet + vps_data.size() + sps_data.size() + pps_data.size(), buffer, size); size += (vps_data.size() + sps_data.size() + pps_data.size()); } else { memcpy(packet, buffer, size); } nalu->packet = std::vector<uint8_t>(packet, packet + size); nalu->length = size; nalu->type = naluType; // 将 nalu 添加到 nalu_vector 或进行其他处理 delete[] packet; } } // --- 头部生成函数 --- void gb28181_make_ps_header(char *header, long pts) { PSHeader ps_header_struct; ps_header_struct.system_clock_reference = pts; // 简化 SCR memcpy(header, &ps_header_struct, sizeof(PSHeader)); } void gb28181_make_sys_header(char *header, int rate_bound) { SystemHeader sys_header_struct; sys_header_struct.header_length = htons(SYS_HDR_LEN - 6); // Length after header_length field sys_header_struct.rate_bound[0] = (rate_bound >> 16) & 0xFF; sys_header_struct.rate_bound[1] = (rate_bound >> 8) & 0xFF; sys_header_struct.rate_bound[2] = rate_bound & 0xFF; memcpy(header, &sys_header_struct, sizeof(SystemHeader)); } void gb28181_make_psm_header(char *header) { PSMHeader psm_header_struct; psm_header_struct.psm_length = htons(PSM_HDR_LEN - 6); // Length after psm_length field memcpy(header, &psm_header_struct, sizeof(PSMHeader)); } void gb28181_make_pes_header(char *header, int stream_id, int data_len, long pts, long dts) { PESHeader pes_header_struct; pes_header_struct.stream_id = stream_id; pes_header_struct.pes_packet_length = htons(data_len + PES_HDR_LEN - 6); // Length after pes_packet_length field pes_header_struct.pts_dts_flags_pts = (static_cast<uint64_t>(pes_pts_counter++) << 3) | 0x02; // 仅设置 PTS 标志 uint64_t pts_33_to_1 = (pes_pts_counter * 300) % 0x200000000LL; // 假设 300 ticks/ms, 90kHz clock uint32_t pts_32_to_2 = pts_33_to_1 & 0xFFFFFFFE0LL; uint8_t pts_byte0 = 0x20 | ((pts_32_to_2 >> 30) & 0x07) << 1 | 0x01; uint16_t pts_byte1_2 = (pts_32_to_2 >> 15) & 0xFFFF; uint16_t pts_byte3_4 = pts_32_to_2 & 0xFFFF; pes_header_struct.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte0) << 40); pes_header_struct.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte1_2) << 24); pes_header_struct.pts_dts_flags_pts |= (static_cast<uint64_t>(pts_byte3_4) >> 8); memcpy(header, &pes_header_struct, sizeof(PESHeader)); } void gb28181_make_rtp_header(char *header, int seq, long pts, int ssrc, bool marker) { RTPHeader rtp_header_struct; rtp_header_struct.sequence_number = htons(seq); rtp_header_struct.timestamp = htonl(pts); rtp_header_struct.ssrc = htonl(ssrc); if (marker) { rtp_header_struct.marker_payload_type |= (1 << 7); // Set marker bit } memcpy(header, &rtp_header_struct, sizeof(RTPHeader)); } // --- 发送网络数据包 --- void send_network_packet(char *packet, int packet_size) { Log("发送网络包, 大小: " + std::to_string(packet_size) + " bytes."); // 模拟发送网络包,实际应用中替换为 socket send 操作 Log("Packet Data (First 64 bytes): \n" + ToHex((uint8_t*)packet, std::min((size_t)64, (size_t)packet_size))); } // --- 判断是否为关键帧 --- bool is_keyframe(NaluType type) { // 这里可以根据 NALU 类型判断是否为关键帧 // 例如,对于 H.264, IDR 帧 (type 5) 是关键帧,对于 H.265, IDR_W_RADL (type 19) 和 IDR_N_LP (type 20) 是关键帧 // 在你的代码中,type 19 被认为是 IDR 帧 return (type == 19 || type == 32 || type == 33 || type == 34); // 假设 VPS, SPS, PPS 也被视为关键帧,用于某些 header 的添加逻辑 } // --- 主程序 --- int main() { Log("--- 示例程序开始 ---"); // 模拟更真实的 NALU 数组,包含 VPS, SPS, PPS, IDR 关键帧, 普通帧 std::vector<Nalu*> nalu_vector_sim; // 模拟 VPS, SPS, PPS (通常在 IDR 帧前) struct Nalu* vps_nalu = new Nalu(); vps_nalu->type = 32; // VPS_NUT vps_nalu->length = 50; vps_nalu->packet.resize(vps_nalu->length); std::iota(vps_nalu->packet.begin(), vps_nalu->packet.end(), 1); nalu_vector_sim.push_back(vps_nalu); out_nalu((char*)vps_nalu->packet.data(), vps_nalu->length, 32); struct Nalu* sps_nalu = new Nalu(); sps_nalu->type = 33; // SPS_NUT sps_nalu->length = 100; sps_nalu->packet.resize(sps_nalu->length); std::iota(sps_nalu->packet.begin(), sps_nalu->packet.end(), 51); nalu_vector_sim.push_back(sps_nalu); out_nalu((char*)sps_nalu->packet.data(), sps_nalu->length, 33); struct Nalu* pps_nalu = new Nalu(); pps_nalu->type = 34; // PPS_NUT pps_nalu->length = 30; pps_nalu->packet.resize(pps_nalu->length); std::iota(pps_nalu->packet.begin(), pps_nalu->packet.end(), 151); nalu_vector_sim.push_back(pps_nalu); out_nalu((char*)pps_nalu->packet.data(), pps_nalu->length, 34); // 模拟 IDR 关键帧 struct Nalu* idr_nalu = new Nalu(); idr_nalu->type = 19; // IDR_W_RADL (示例 IDR 类型) idr_nalu->length = 2048; idr_nalu->packet.resize(idr_nalu->length); std::iota(idr_nalu->packet.begin(), idr_nalu->packet.end(), 201); nalu_vector_sim.push_back(idr_nalu); out_nalu((char*)idr_nalu->packet.data(), idr_nalu->length, 19); // 模拟 普通帧 (非关键帧) struct Nalu* non_idr_nalu = new Nalu(); non_idr_nalu->type = 1; // TRAIL_R_NUT (示例 普通帧类型) non_idr_nalu->length = 1500; non_idr_nalu->packet.resize(non_idr_nalu->length); std::iota(non_idr_nalu->packet.begin(), non_idr_nalu->packet.end(), 2200); nalu_vector_sim.push_back(non_idr_nalu); out_nalu((char*)non_idr_nalu->packet.data(), non_idr_nalu->length, 1); // RTP 发送处理略... int time_base = 90000; int fps = 24; int send_packet_interval = 1000 / fps; int interval = time_base / fps; long pts = 0; int single_packet_max_length = 1400; int ssrc_val = 0x12345678; // 示例 SSRC std::string rtp_protocol_type = "UDP/RTP/AVP"; // 或 "TCP/RTP/AVP" Log("[process_request] 开始模拟推流, NALU 数量: " + std::to_string(nalu_vector_sim.size())); for (auto* nalu : nalu_vector_sim) { const NaluType type = nalu->type; const int length = nalu->length; const uint8_t* packet = nalu->packet.data(); const bool is_key = is_keyframe(type); Log("处理 NALU, Type: " + std::to_string(type) + ", Keyframe: " + (is_key ? "Yes" : "No") + ", Size: " + std::to_string(length) + " bytes."); // 在遇到 VPS、SPS、PPS 时,先进行封装 char frame_buffer[1024 * 128]; // 帧数据缓冲区 int frame_index = 0; char ps_header_buf[PS_HDR_LEN]; char sys_header_buf[SYS_HDR_LEN]; char psm_header_buf[PSM_HDR_LEN]; char pes_header_buf[PES_HDR_LEN]; char rtp_packet_buf[RTP_HDR_LEN + 1400]; // 声明 rtp_header_buf char rtp_header_buf[RTP_HDR_LEN]; // 封装 VPS, SPS, PPS if (type == 32 || type == 33 || type == 34) { // VPS, SPS, PPS memcpy(frame_buffer + frame_index, packet, length); frame_index += length; } // --- PS 封装 --- gb28181_make_ps_header(ps_header_buf, pts); memcpy(frame_buffer + frame_index, ps_header_buf, PS_HDR_LEN); frame_index += PS_HDR_LEN; if (is_key) { gb28181_make_sys_header(sys_header_buf, 0x3f); // 示例 rate_bound memcpy(frame_buffer + frame_index, sys_header_buf, SYS_HDR_LEN); frame_index += SYS_HDR_LEN; gb28181_make_psm_header(psm_header_buf); memcpy(frame_buffer + frame_index, psm_header_buf, PSM_HDR_LEN); frame_index += PSM_HDR_LEN; } // --- PES 封装 --- gb28181_make_pes_header(pes_header_buf, 0xe0, length, pts, pts); memcpy(frame_buffer + frame_index, pes_header_buf, PES_HDR_LEN); frame_index += PES_HDR_LEN; memcpy(frame_buffer + frame_index, packet, length); frame_index += length; // --- RTP 分包发送 --- int rtp_packet_count = (frame_index + single_packet_max_length - 1) / single_packet_max_length; Log("RTP 分包数: " + std::to_string(rtp_packet_count)); for (int i = 0; i < rtp_packet_count; ++i) { bool is_last_packet = (i == rtp_packet_count - 1); gb28181_make_rtp_header(rtp_header_buf, rtp_seq_counter, pts, ssrc_val, is_last_packet); int offset = i * single_packet_max_length; int data_size = std::min(single_packet_max_length, frame_index - offset); int rtp_start_index = 0; if (rtp_protocol_type == "TCP/RTP/AVP") { uint16_t packet_length = RTP_HDR_LEN + data_size; rtp_packet_buf[0] = (packet_length >> 8) & 0xFF; rtp_packet_buf[1] = packet_length & 0xFF; rtp_start_index = 2; } memcpy(rtp_packet_buf + rtp_start_index, rtp_header_buf, RTP_HDR_LEN); memcpy(rtp_packet_buf + rtp_start_index + RTP_HDR_LEN, frame_buffer + offset, data_size); send_network_packet(rtp_packet_buf, rtp_start_index + RTP_HDR_LEN + data_size); rtp_seq_counter++; } pts += interval; std::this_thread::sleep_for(std::chrono::milliseconds(send_packet_interval)); delete nalu; // 模拟 Device::push_rtp_stream 中的 nalu delete } Log("--- 示例程序结束 ---"); return 0; }基本逻辑
VPS/SPS/PPS 缓冲 out_nalu函数会将 buffer 中的数据分别复制到全局变量中,等待遇到关键帧的时候将其加入进入 IDR 帧处理 (关键帧) 将缓冲区中的VPS/PPS/SPS加入到Nalu之前 非 IDR 帧处理 (普通帧) 直接分配内存进行发送【音视频】H265解码Nalu后封装rtp包由讯客互联游戏开发栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“【音视频】H265解码Nalu后封装rtp包”